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Abstract

We present estimators for nonparametric functions that depend on unobservable random vari-
ables in nonadditive ways. The distributions of the unobservable random terms are assumed to be
unknown. We show how properties that may be implied by economic theory, such as monotonicity,
homogeneity of degree one, and separability can be used to identify the unknown, nonparametric
functions and distributions. We also present convenient normalizations, to use when the properties
of the functions are unknown. The estimators for the nonparametric distributions and for the non-
parametric functions and their derivatives are shown to be consistent and asymptotically normal.
The results of a limited simulation study are presented.
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1. Introduction
A common practice when estimating many economic models proceeds by …rst specifying the re-
lationship between a vector of observable exogenous variables, X, and a dependent variable, Y ,
and then, adding a random unobservable term, ", to the relationship. In the resulting model, "
is typically interpreted as the di¤erence between the observed value of the dependent variable, Y ,
and the conditional expectation of Y given X. This procedure has been criticized on the grounds
that instead of adding an unobservable random term to the relationship, as an after-thought, one
should be able to generate an unobservable random term from within the model. When approaching
the random relationship in the latter way, " may represent an heterogeneity parameter in a utility
function, some productivity shock in a production function, or some other relevant unobservable
variable (see, for example, Heckman (1974), Heckman and Willis (1974), and Lancaster (1979)).
When using this approach, the random term " rarely appears in the model as a term added to
the conditional expectation of Y given X (McElroy (1981, 1987), Brown and Walker (1989, 1995),
Lewbel (1996).) In general, unless one speci…es very restrictive parametric structures for the func-
tions in the economic model, the function by which the values of Y are determined from X and "
is nonlinear in ".
Most nonparametric methods that are currently used to specify the relationship between a vector

of observable exogenous variables, X, an unobservable term, and an observable dependent variable,
Y; de…ne the unobservable random term as being the di¤erence between Y and the conditional
expectation. The resulting model is then one where the unobservable random term is added to
the relationship. Although one could interpret this added unobservable random term as being a
function of the observable and some other unobservable variables, the existent methods do not
provide a way of studying this function, which has information about the important interactions
between the observable and unobservable variables.
In this paper, we present a nonparametric method for estimating a nonparametric, not necessar-

ily additive function of a vector of exogenous variables, X; and an unobservable vector of variables,
": The value of a dependent variable, Y , is assumed to be determined by this nonparametric func-
tion. The distribution of " is not parametrically speci…ed and it is also estimated.
We …rst consider the model Y = m(X,"); where " is a random variable, m is strictly increasing

in "; and both the function m and the distribution of " are unknown. We characterize the set of
functions that are observationally equivalent to m, when " is independent of X; and provide three
di¤erent speci…cations for the function m; which allow one to identify the distribution of " and the
functionm: The …rst speci…cation is just a convenient normalization. It speci…es the value ofm(x; ")
at a particular value of x. The second speci…cation imposes an homogeneity of degree one condition,
along a given ray, on some coordinates of X and ": This condition, together with the speci…cation
of the value of m at only one point of the ray, is shown to be su¢cient to identify the distribution
of " and the function m: This second speci…cation is particularly useful, for example, when the
function m is either a cost or pro…t function, since economic theory implies that these functions
are homogenous of degree one in some or all of their arguments. The third speci…cation can be
seen as a nonparametric generalization of semiparametric transformation models where neither the
transformation function nor the distribution of the unobservable random term are parametrically
speci…ed. Instead of specifying that Y = ¤(¯0X + "), where ¤ is a strictly increasing, unknown
function, and where both, the absolute value of one of the coordinates of ¯ and the value of ¤ at
one point are given (see, for example, Horowitz (1996)), we specify that Y = s(X1; "¡X2); for some
unknown function s; which is strictly increasing in the last coordinate and whose value is given at
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one point. In the latter speci…cation, X = (X1; X2) and X2 2 R:
For each of the three speci…cations, we extend the identi…cation results to the case where " is

independent of only some coordinates of X; conditional on the other coordinates. A special case
of this is, of course, when " is independent of X; conditional on some vector Z; which is not an
argument of m; since we can consider functions m that are constant as Z varies.
For each of the speci…cations and assumptions on the distribution of "; we show that the estima-

tor for the distribution of " at a particular value, e; is obtained from an estimator for the conditional
distribution function of Y given X; evaluated at particular values of X and Y: The estimator for
the value of the function m at a particular vector, (x; e); is de…ned as an estimator for a quantile
of the conditional distribution function of Y given X = x; where the quantile is the value of the
estimator for the distribution of ", at " = e:The estimator for the quantile is based on the quantile
estimator of Nadaraya (1964) (see also Azzalini (1981)).
The estimators for the distribution of "; the function m; and the derivatives of m are shown to

be consistent and asymptotically normal. Each of these estimators is a nonlinear functional of a
kernel estimator for the density function of (Y;X):We derive their asymptotic distributions using a
Delta method of the type developed in Ait-Sahalia (1994) and Newey (1994). This method proceeds
by …rst obtaining a …rst order Taylor expansion of each nonlinear functional around its true value,
and then deriving the asymptotic distribution of the linear part of the expansion.
Some other papers that consider nonparametric models where the random terms do not enter in

an additive form are Roehrig (1988), Brown and Matzkin (1996), Altonji and Ichimura (1997), Al-
tonji and Matzkin (1997), Heckman and Vytlacil (1999, 2001), Vytlacil (2000), Bajari and Benkard
(2001), and Imbens and Newey (2001). Roehrig (1988) provides a general condition for the identi…-
cation of nonparametric systems of equations. Brown and Matzkin (1996) extend Roehrig (1988)’s
conditions and provide an extremum estimator for estimating nonparametric simultaneous equa-
tions of the form studied in Roehrig (1988). Altonji and Ichimura (1997) consider models with
one dependent variable, and estimate an average derivative. Altonji and Matzkin (1997) consider
the estimation of models for panel data. Heckman and Vytlacil (1999, 2001) and Vytlacil (2000)
study models where potential outcomes are nonadditive in unobservable random terms. Bajari
and Benkard consider the identi…cation and estimation of nonadditive price functions in hedonic
models. Imbens and Newey (2001) study the estimation of a triangular, nonseparable simultaneous
equations model.
In nonparametric models where the unobservable random term is additive, shape restrictions

have been used in previous work to identify otherwise unidenti…ed nonparametric functions and
to estimate nonparametric models (see, for example, Matzkin (1992)). Matzkin (1994) provides a
review of some of the existent literature for limited dependent variable models and nonparametric
regression functions.
There is also a large literature in econometrics, which started with Heckman and Singer (1984a),

on models that incorporate an unobservable random term, which is interpreted as an heterogeneity
parameter, and whose distribution is nonparametric.
The outline of the paper is as follows. In the next section, we present the basic model and study

its identi…cation. In Section 3, we present estimators for the function m and the distribution of ";
together with their asymptotic properties. The results are extended to functions that depend on
a multidimensional unobservable random term "; in Section 4. Estimators for the derivatives of
m are studied in Section 5. Section 6 presents the results of some simulations. A short summary
is presented in Section 7. Appendix A contains most of the proofs of the main theorems, while
Appendix B presents, in a Lemma, previously obtained results, which are used in the proofs given
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in Appendix A.

2. The Model
The building block for the models that we will study can be described by the basic model

(2.1) Y = m(X; ")

where m : A£ E ! R is continuous in (X; ") and strictly increasing in "; A ½ RL is the support
of X; E ½ R is the support of "; Y and X are observable, and " is an unobservable random
term which is distributed, with a distribution F"; independently (or conditionally independently) of
X: Many widely used type of models fall into this category. Models where " represents unobserved
heterogeneity or a technological shock may satisfy model (1). Models that are expressed in terms
of an unobservable variable that is not independent of X may be rewritten as models with an
unobservable random term that is independent of X: If Y = r(X; ´), where ´ is not independent of
X; but ´ = s(X; ") where " is independent of X; then Y = r(X; s(X; ")) = m(X; "):
Some transformation models satisfy (1), such as the one presented in Box and Cox (1964) and

the semiparametric generalized regression model in Han (1987), when the transformation is strictly
increasing. All the transformation models studied in Horowitz (1996), of the type Y = ¤¡1(¯ 0X+");
where ¤ is an unknown, strictly increasing function and " is distributed independently of X with
an unknown distribution, satisfy model (1).
Duration models, where Y denotes time in a state and " is the negative of the log-integrated

hazard function, fall into the category of model (1), even when the hazard function is not separable
in any of its arguments. In this case, " is distributed extreme value, independently of X; and
m(X; ") = ¤¡1(X; e¡"); where ¤(X;Y ) is the integrated hazard up to time Y; conditional on X;
and ¤¡1(X; ¢) denotes the inverse of ¤(X;Y ) with respect to Y:
Duration models with unobserved heterogeneity also satisfy model (1), when the conditional haz-

ard function is multiplicative in the unobserved heterogeneity variable. Let µ denote the unobserved
heterogeneity variable, assumed to be distributed independently of X: Let h(sjX; µ) denote the
conditional hazard function, and suppose that it can be written as h(sjX; µ) = r(s;X)e¡µ for some
unknown, nonnegative function r: Let " = u+ µ; where u is the negative of the log of the integrated
conditional hazard function. Then, u is distributed extreme value, independently of (X; µ); and,
hence, " is independent of X: In this model m(X; ") = ¤¡1(X; e¡"); with ¤(X; Y ) =

R Y
s=0 r(s;X)ds:

The identi…cation of this model, with r possessing no particular structure, was studied in Heckman
(1991):The case where r(s;X) = r1(s)r2(X) was studied by Elbers and Ridders (1982), Heckman
and Singer (1984), Barros and Honore (1988), and Ridders (1990). (See Barros (1986) for the case
where r(s;X) is a known function of r1(s) and r2(X):)
The …rst question that arises when specifying the model in (1) is whether one can identify the

functionm and the distribution of ". Following the standard de…nition of identi…cation, we say that
(m;F") is identi…ed if we can uniquely recover it from the distribution of the observable variables.
More speci…cally, let M denote a set to which the function m belongs, and let ¡ denote a set to
which F" belongs: Let FY;X(¢;m0; F 0") denote the joint cdf of the observable variables when m = m0

and F"=F 0": Then,

4



De…nition: The pair (m;F") is identified in the set (M £ ¡) if
(i) (m;F") 2 (M £ ¡) and (ii) for all (m0; F 0") in (M £ ¡) ;
[FY;X(¢;m;F") = (FY;X(¢;m0; F 0")] =) (m 0;F 0") = (m;F ")

If for any two functions, m0 and m" in M , we can …nd distributions, F 0" and F"" in ¡ such that
the pairs (m0; F 0") and (m"; F"") generate the same distribution of observable variables, m

0 and m"
are said to be observationally equivalent.

De…nition: Any two functions, m0 and m" in M are said to be observationally equivalent if there
exist F 0"; F

"
" in ¡ such that for all (y; x), Fy;x(y; x;m

0; F 0") = Fy;x(y; x;m
"; F "" ):

To analyze the identi…cation of (m;F") in model (1), we …rst note that, since m is strictly
increasing in "; there exists a function v such that for all x 2 A; " 2 E; and y 2 m(A;E);
v(x; y) = " if and only if y = m(x; "): Hence, the function v is the inverse of m; conditional on
X: Clearly, (v; F") is identi…ed if and only if (m;F") is identi…ed. Let ¡ denote a set of continuous,
strictly increasing distribution functions. Let V denote a set of continuous functions to which v
belongs. The next Lemma shows what properties V has to satisfy to guarantee the identi…cation
of (v; F") in V £¡: If the function v were assumed to be di¤erentiable, we could present a di¤erent
proof for this lemma, using the results in Roehrig (1988).

Lemma 1: v; v0 2 V are observationally equivalent if and only if there exists a strictly increasing
function g : R! R such that v0 = g ± v:

Proof of Lemma 1: Note that, by the de…nition of v and the independence between " and X;

Pr(Y · yjX = x) = Pr(m(X; ") · yjX = x) = Pr(" · v(x; y)jX = x) = F"(v(x; y)):

Hence, FY jX=x(y) = F"(v(x; y))
If v and v0 are observationally equivalent, there exist F 0" and F

00
" in ¡ such that for all (x; y);

F 00" (v(x; y)) = F 0"(v
0(x; y)): Since F 0" is strictly increasing, v

0(x; y) = (F 0")
¡1F 00" (v(x; y)): Let g =

(F 0")
¡1F 00" :Then, g is strictly increasing and v

0 = g ± v:
On the other side, suppose that v0 = g ± v for some strictly increasing function g: Let F 0" =

F" ± g¡1: It then follows that

FY jX=x(y; v; F") = F"(v(x; y)) = F 0"(v
0(x; y)) = FY jX=x(y; v0; F 0")

Hence, v and v0 are observationally equivalent. This completes the proof.

The lemma states that the function v is identi…ed up to a monotone transformation, g. For any
such transformation, (g ± v; F" ± g¡1) and (v; F") generate the same distribution of (Y;X): To see
what this means in terms of the inverse function m; suppose that m¤ and F ¤" are the true function
and distribution, and let v¤ denote the inverse function ofm¤; conditional on x: Then, " = v¤(x; y) is
distributed with F ¤" and y = m

¤(x; "): Let g be any strictly increasing transformation. Let "0 = g(")
and v0(x; y) = g(v¤(x; y)): The lemma implies that the model "0 = g(") = g(v¤(x; y)) = v0(x; y)
generates the same distribution of the observable variables as the model " = v¤(x; y): Let m0
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denote the inverse function of v0; conditional on x: Then, for any value e; m0(x; e) denotes the
value of y that satis…es e = v0(x; y): Let then "0 and x be given. To …nd such a value of y; we
note that since "0 = v0(x; y) = g(v¤(x; y)); v¤(x; y) = g¡1("0): Hence, since m¤ is the inverse of v¤;
conditional on x; y = m¤(x; g¡1("0)): This shows that m0(x; "0) = m¤(x; g¡1("0)); or, since "0 = g(");
m0(x; g(")) = m¤(x; "): Hence, m0 and m¤ are observationally equivalent if and only if m0 equals m¤

with " substituted by g("); for some strictly increasing function g; that is

m0(x; g(")) = m¤(x; "):

The discussion in the above paragraph shows that, for normalization purposes, we are free to
choose the function g: One convenient normalization is given by the function g such that, for some
given value x of X;

g(v(x; y)) = y:

The function m;which is the inverse function of g ± v is the function that satis…es

m(x; ") = ":

Hence, this normalization accounts to …xing the values of the functionm at some value of the vector
X: If for example, m(x; ") = " ¢ x, then this is satis…ed for x = 1: Somewhat more generally, we
could require that

m(x0; x1; ") = "

for all x0 and some given x1; where X = (X0; X1): If, for example, m(x0; x1; ") = " ¢ x1 + r(x0; x1),
where r(x0; x1) = 0 when x1 = x1; then m would satisfy this. Note that the structure would not
need to be maintained when X1 6= x1:
An alternative route to choosing a normalization, is to see whether the restrictions of economic

theory that are implied on the function m could be used to restrict the set of functions v in such a
way that no two di¤erent functions that satisfy those restrictions can be strictly transformations of
each other. Suppose for example that the function m is homogeneous of degree one in " and some
other of its arguments, on some given ray from the origin. More speci…cally, suppose that, for some
X = (x0; x1); some ® 2 R; some "; and all ¸ ¸ 0

m(x0; ¸x1; ¸") = ¸® where m(x0; x1; ") = ®

Then, using arguments as those in Matzkin (1992, 1994), one can show that for any two conditional
inverse functions v; corresponding to two di¤erent functions m; it is not possible to write one of
those v functions as a strictly increasing transformation of the other. One can obtain the same
e¤ect if the function m is such that for some x1; some ® 2 R; all x0 and all ¸ ¸ 0

m(x0; ¸x1; ¸") = ¸® where m(x0; x1; ") = ®:

When m is a pro…t function or a cost function, m is homogeneous of degree one in all or some of its
arguments. Hence, in these cases, identi…cation requires only a location normalization, which can
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be imposed by …xing the value of the function at one point.
If it is reasonable to assume that the v function is additive in one of its arguments, then, again

one can show that no two di¤erent functions v can be written as strictly increasing transformations
of each other (see Matzkin (1992,1994)). More explicitly, suppose that X = (X0; X11;X12) is such
that X12 2 R; and that

v(x0; x11; x12; y) = r(x0; x11; y) + x12

where for some (x0; x11; y); r(x0; x11; y) = ®: Then, the inverse function m has the form

m(x0; x11; x12; ") = s(x0; x11; "¡ x12) where s(x0; x11; ®) = y:

This speci…cation can be seen as a nonparametric, partially nonadditive generalization of the trans-
formation model studied in Horowitz (1996), where Y = ¤¡1(¯ 0X+ "); ¤¡1 is unknown and strictly
increasing, and the distribution of " is unknown. In Horowitz (1996), the value of ¤ is speci…ed
at one point and the absolute value of the coe¢cient of one coordinate of X is set to 1: In our
speci…cation, we specify the value of s at the point (x0; x11; ®) and set the coe¢cient of X12 equal
to 1: (Note also the resemblance with the parametric, random production function speci…ed in
MdElroy (1987)). The identi…cation here can be also achieved if

m(x0; x11; x12; ") = s(x0; x11; "¡ x12)

where for some x11 and all x0; s(x0; x11; ®) = y: This would be satis…ed, for example, if the function
m were such that m(x0; x11; x12; ") = n1(x11; x12 ¡ ") + n2(x0; x11); for some unknown functions n1
and n2 such that n2(x0; x11) = 0 for all x0: Note that this function need not be additively separable
in the n1 and n2 functions when X11 6= x11:
Other speci…cations could be developed by using, as it was exempli…ed in the last paragraphs,

the result of Lemma 1.

3. Estimation of the Basic Model
To develop estimators for the function m and the distribution of " in the basic model (2.1); we will
derive expressions for these, in terms of the distribution of the vector of the observable variables.
We will do this for the three basic speci…cations described in Section 2. Analogous expressions
could be obtained for other speci…cations of the function m: Once the unknown functions and
distributions are expressed in terms of the distribution of (Y;X); we will derive estimators for these
unknown functions and distributions by substituting the distribution of the observable variables
with a nonparametric estimator of it. While we could consider using any type of nonparametric
estimator for the this distribution, we present here the details and asymptotic properties for the
case in which the conditional cdf’s are estimated using the method of kernels. To express the
unknown functions and distributions in terms of the distribution of the observable variables, let
X = (X0; X1):We will make the following assumptions:

Assumption I.1: " is independent of X1; conditional on X0:
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Assumption I.2: For all X; m is strictly increasing in ":

Assumption I.1 guarantees that, conditional onX0; the distribution of " is the same for all values
of X1: Although we explicitly write X0 as an argument of the function m; this is not necessary. The
vector X0 may be such that the function m is not a function of it. Assumption I.2 guarantees that
the distribution of " can be obtained from the conditional distribution of Y given X:
Under these assumptions, the mapping between the unknown functions m and F"jX and the

distribution of the observable variables FY;X is given by

(3:1) F"jX0=x0(e) = FY jX=x (m(x; e)) for all e 2 E and x 2 A;

This is because F"jX0=x0(e) = Pr (" · ejX0 = x0) = P ( " · ejX0 = x0;X1 = x1) = Pr( m(X; ") ·
m(x; e) j X = x ) = Pr (Y · m(x; e) j X = x) = FY jX=x (m(x; e)) : The …rst equality follows by
the de…nition of F", the second follows by the conditional independence between " and X1, the third
follows by the monotonicity of m(x; ¢) in its last argument; the fourth follows by the de…nition of
Y; and the …fth equality follows by the de…nition of FY jX :
Equation (3.1) provides an easy interpretation of m(x; e): From these equations it follows that

m(x; e) is the same quantile of the distribution of Y given X = x as the quantile that e is of the
distribution of " conditional on X0: In other words, let q be such that e is the qth quantile of F"jX0 ;
then, by (3.1), m(x; e) must be the qth quantile of the conditional distribution, FY jX=x; of Y given
X = x: The set fm(x; e)jx 2 Ag then represents the set of the conditional qth quantiles of the
distribution of Y given X:

3.1. Speci…cation I

Consider …rst the case where

(I.1) m(x0; x1; ") = " for some x1 and all x0; and Assumptions I.1 and I.2 are satis…ed.

Letting X1 = x1 in (3.1), it follows that for all x0 and all e;

(3:2) F"jX0=x0(e) = FY jX=(x0;x1) (e) :

Hence, the conditional distribution of " given X0 is the value of the conditional distribution of Y
when X = (x0; x1): To derive an expression for the function m; we note that since Y = m(X; ") and
m(x; ¢) is strictly increasing, the conditional cdf of Y given X = x is strictly increasing on the set
m(x;E) = fyjy = m(x; "); " 2 Eg; hence FY jX has an inverse on m(x;E). From (3.1) and (3.2), it
then follows that for all (x0; x1);

(3:3) m(x; e) = F¡1Y jX=(x0;x1)
³
FY jX=(x0;x1) (e)

´
:

Suppose, next that

(I.2) m(x0; x1; ") = " for some x1 and all x0; and Assumptions I.1’ and I.2 are satis…ed,
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where

Assumption I.1’: " is independent of (X0; X1):

then, we have that

(3:10) F"(e) = FY jX=x (m(x; e)) for all e 2 E and x 2 A;

(3:20) F"(e) = FY jX1=x1 (e) ; and

(3:30) m(x; e) = F¡1Y jX=(x0;x1)
³
FY jX1=x1 (e)

´
:

Expression (3.1’) follows because F"(e) = P ( " · ejX = x) = Pr( m(x; ") · m(x; e) j X = x ) =
Pr (Y · m(x; e) j X = x) = FY jX=x (m(x; e)) : Expression (3.2’) follows by, …rst, letting X1 = x1
in (3.1’), so that for all e and x0;

F"(e) = FY jX=(x0;x1) (e) :

Then, since
R
f(x0jX1 = x1) dx0 = 1; it follows that

F"(e) =
R
FY jX=(x0;x1) (e) f(x0jX1 = x1) dx0

=
R R e

¡1
f(s;x0;x1)
f(x0;x1)

f(x0;x1)
f(x1)

ds dx0

=
R e
¡1

f(s;x1)
f(x1)

ds

= FY jX1=x1 (e) :

Expression (3.3’) then follows from (3.1’) and (3.2’).

Finally, suppose that

(I.3) m(x1; ") = " for some x1; and Assumptions I.1’ and I.2 are satis…ed.

Then, following arguments similar to the ones given above, we have that

(3:200) F"(e) = FY jX1=x1 (e) ; and

(3:300) m(x; e) = F¡1Y jX1=x1
³
FY jX1=x1 (e)

´
:

3.2. Speci…cation II

Consider next the case where
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(II.1) Assumptions I.1’ and I.2 are satis…ed, and for some x1; "; some ® 2 R; all x0; and all ¸
such that ¸" 2 E

m(x0; ¸x1; ¸") = ¸® where m(x0; x1; ") = ®:

Then, given any ¸ and letting x1 = ¸x1 and e = ¸", we have, from (3.1), that for all x0; F"jX0=x0(¸")
= FY jX=(x0;¸x1) (m(x0; ¸x1; ¸")) = FY jX=(x0;¸x1) (¸®) ; where the second equality follows because
m(x0; ¸x1; ¸") = ¸m(x0; x1; ") = ¸®: In particular, for any e 2 E;

(3:4) F"jX0=x0(e) = FY jX=(x0;(e=")x1) ((e=")®) ;

by letting ¸ = (e="): Hence, F"jX0=x0(e) can be recovered from the conditional cdf of Y given X,
when y = (e=")® and x = (x0; (e=")x1) : Since the strict monotonicity of m(x; ¢) implies that FY jX
has an inverse on m(x;E); it follows from (3.1) and (3.4) that

(3:5) m(x; e) = F¡1Y jX=x
³
FY jX=(x0;(e=")x) ((e=")®)

´
;

which provides the mapping between m(x; e) and the distribution of the observable variables.
Next, suppose that

(II.2) Assumptions I.1 and I.2 are satis…ed, and for some x1; "; some ® 2 R; all x0 and all ¸
such that ¸" 2 E;

m(x0; ¸x1; ¸") = ¸® where m(x0; x1; ") = ®:

Then, using the same reasoning as used for the case where m(x0; x1; ") = "; we will have that (3.1’)
is satis…ed, as well as

(3:40) F"(e) = FY jX1=((e=")x1) ((e=")®) and

(3:50) m(x0; x1; e) = F¡1Y jX=(x0;x1)
³
FY jX1=((e=")x1) ((e=")®)

´
:

When the speci…cation is given by

(II.3) Assumptions I.1 and I.2 are satis…ed, and for some x0; x1; "; ® 2 R; and all ¸ such that
¸" 2 E

m(x0; ¸x1; ¸") = ¸® where m(x0; x1; ") = ®;

we can show that

F"(e) = FY jX=x (m(x; e)) ;

which together with the speci…cation implies that

(3:400) F"(e) = FY jX=(x0;(e=")x1) ((e=")®) ;
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and for all X = (x0; x1);

(3:500) m(x; e) = F¡1Y jX=x
³
FY jX=(x0;(e=")x) ((e=")®)

´
:

3.3. Speci…cation III

Finally, we consider the case where for some unknown function s(¢);

(III.1) m(x0; x11; x12; ") = s(x0; x11; " ¡ x12); for all x0; s(x0; x11; ®) = y; and Assumptions I.3
and I.4 are satis…ed,

where

Assumption I.3: " is independent of X1 = (X11;X12); conditional on X0:

Assumption I.4: For all (x0; x11); s(x0; x11; ¢) is strictly increasing

Then,

(3:6) F"jX0=x0(e) = FY jX=x (s(x0; x11; e¡ x12)) for all e 2 E and x 2 A;

since F"jX0=x0(e) = Pr (" · ejX0 = x0) = P ( " · ej(X0; X1) = (x0; x1)) = Pr( "¡X12 · e¡ x12 j
(X0; X1) = (x0; x1) ) = Pr (s(X0; X11; "¡X12) · s(x0; x11; "¡ x12) j X = x) = FY jX=x (s(x0; x11; e¡ x12)) :
Letting X11 = x11 and X12 = e¡ ®; in (3.6), we get that

(3:7) F"jX0=x0(e) = FY jX=(x0;x11;e¡®) (y) :

Hence, the conditional distribution of " given X0 is the value of the conditional distribution of Y
at y; when (X11; X12) = (x11; e ¡ ®): To derive an expression for the function s; we use (3.6) and
(3.7) to get

(3.8) s(x0; x11; e¡ x12) = F¡1Y jX=x
³
FY jX=(x0;x11;e¡®) (y)

´
If, we consider

Assumption I.3’: " is independent of X

and the speci…cation is

(III.2) m(x0; x11; x12; ") = s(x0; x11; "¡ x12); for all x0; s(x0; x11; ®) = y; and Assumptions I.3’
and I.4 are satis…ed,

then, we can average out over x0; using the conditional pdf of X0 given X1; to get

11



(3:70) F"(e) = FY jX1=(x11;e¡®) (y) and

(3:80) s(x0; x11; e¡ x12) = F¡1Y jX=x
³
FY jX1=(x11;e¡®) (y)

´
If the speci…cation is

(III.3) m(x0; x11; x12; ") = s(x0; x11; "¡ x12); for some (x0; x11); s(x0; x11; ®) = y; and Assump-
tions I.3’ and I.4 are satis…ed,

then,

(3:700) F"(e) = FY jX=(x0;x11;e¡®) (y) and

(3:800) s(x0; x11; e¡ x12) = F¡1Y jX=x
³
FY jX1=(x0;x11;e¡®) (y)

´

3.4. Estimation using speci…cations I, II, and III

To develop the estimators, let the data be denoted by fX i; Y igNi=1 : Let f(y; x) and F (y; x) denote,
respectively, the joint pdf and cdf of (Y;X); let f̂(y; x) and F̂ (y; x) denote, respectively, their ker-
nel estimators, and let f̂Y jX=x(y) and F̂Y jX=x(y) denote the kernel estimators of, respectively, the
conditional pdf and conditional cdf of Y given X = x: Then,

f̂(y; x) = 1
N¾L+1

N

PN
i=1 K(

y¡Y i
¾
; x¡X

i

¾
) for all (y; x) 2 R1+L;

F̂ (y; x) =
R y
¡1

R x
¡1 f̂N(s; z) ds dz;

f̂Y jX=x(y) =
f̂N (y;x)R1

¡1 f̂N (s;x) ds
; and

F̂Y jX=x(y) =
R y
¡1 f̂N (s;x) dsR1
¡1 f̂N (s;x) ds

where K : R £ RL ! R is a kernel function and ¾N is the bandwidth. The above estimator for
F (y; x) was proposed in Nadaraya (1964). When K(s; z) = k1(s)k2(z) for some kernel functions
k1 : R! R and k2 : RL ! R;

F̂Y jX=x(y) =
R y
¡1 f̂N (s;x) dsR1
¡1 f̂N (s;x) ds

=
PN

i=1
ek1(y¡Y i¾

) k2(
x¡Xi
¾

)PN

i=1
k2(

x¡Xi
¾

)

where ek1(u) = R u
¡1 k1(s) ds: Note that the estimator for the conditional cdf of Y given X is di¤erent

from the Nadaraya-Watson estimator for FY jX=x(y): The latter is the kernel estimator for the

12



conditional expectation of Z ´ 1[Y · y] given X = x: For any t and x, F̂¡1Y jX=x(t) will denote the

set of values of Y for which F̂Y jX=x(y) = t: The estimators are obtained by substituting FY jX and
F¡1Y jX by

bFY jX and bF¡1Y jX , at the corresponding values of Y and X; in equations (3:2); (3:3); (3:20);
(3:30); (3:200); (3:300); (3:4); (3:5); (3:40); (3:50); (3:400); (3:500); (3:6); (3:7); (3:60); (3:70); (3:600); and
(3:700): Hence, when (I.1) is satis…ed

bF"jX0=x0(e) = bFY jX=(x0;x1) (e) and

cm(x; e) = bF¡1Y jX=(x0;x1) ³ bFY jX=(x0;x1) (e)´ ;
when (I.2) is satis…ed,

bF"(e) = bFY jX1=x1 (e) and
cm(x; e) = bF¡1Y jX=(x0;x1) ³ bFY jX1=x1 (e)´ ;

and when (I.3) is satis…ed

bF"(e) = bFY jX1=x1 (e) and
cm(x; e) = bF¡1Y jX1=x1 ³ bFY jX1=x1 (e)´ :
When (II.1) is satis…ed,

bF"jX0=x0(e) = bFY jX=(x0;(e=")x1) ((e=")®) ; and
cm(x; e) = bF¡1Y jX=x ³ bFY jX=(x0;(e=")x) ((e=")®)´ ;

when (II.2) is satis…ed

bF"(e) = bFY jX1=((e=")x1) ((e=")®) and
cm(x0; x1; e) = bF¡1Y jX=(x0;x1) ³ bFY jX1=((e=")x1) ((e=")®)´ ;

and when (II.3) is satis…ed

bF"(e) = bFY jX=(x0;(e=")x1) ((e=")®) ; and
cm(x; e) = bF¡1Y jX=x ³ bFY jX=(x0;(e=")x) ((e=")®)´ :
Finally, when (III.1) is satis…ed

bF"jX0=x0(e) = bFY jX=(x0;x11;e¡®) (y) ; and
bs(x0; x11; e¡ x12) = bF¡1Y jX=x ³ bFY jX=(x0;x11;e¡®) (y)´ ;
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when (III.2) is satis…ed

bF"(e) = bFY jX1=(x11;e¡®) (y) and

bs(x0; x11; e¡ x12) = bF¡1Y jX=x ³ bFY jX1=(x11;e¡®) (y)´ ; and
when (III.3) is satis…ed

bF"(e) = bFY jX=(x0;x11;e¡®) (y) and

bs(x0; x11; e¡ x12) = bF¡1Y jX=x ³ bFY jX1=(x0;x11;e¡®) (y)´ :
Note that when bFY jX=x is not strictly increasing, bF¡1Y jX=x may contain more than one value. In

that case we let the estimator be any of those values.
In all the above de…nitions, the value of the marginal or conditional distribution of " at some given

value e; is given by the value of the conditional distribution of Y; given that X; or, more generally,
a subvector, W; of X; equals a given value, w: This conditional distribution of Y is evaluated at
some given value y: The estimator is obtained by substituting the true conditional distribution of
Y by its kernel estimator. Hence, the consistency and asymptotic normality of the estimator of the
marginal or conditional distribution of " will follow from the consistency and asymptotic normality
of the kernel estimator for the conditional distribution of Y given that W = w: It follows that the
asymptotic properties for each of the estimators for the distribution of " given above can be derived
from the following result, by substituting the corresponding values of w and y:
Let d denote the dimension of w; and let d0 = d+ 1: Let

R
K(z)2 =

R
(
R
K(s; z) ds)2 dz; where

s 2 R and z 2 Rd:We make the following assumptions:

Assumption C.1: The sequence fY i; Xig is i.i.d.

Assumption C.2: f(Y;X) has compact support £ ½ R1+L and is continuously di¤erentiable up
to the order s0; for some s0 > 0:

Assumption C.3: The kernel function K(¢; ¢) is Lipschitz, vanishes outside a compact set, inte-
grates to 1, and is of order s0:

Assumption C.4: As N !1; ln(N)=N¾d0N ! 0 and ¾s
0
N

q
N¾2dN ! 0:

Assumption C.5: 0 < f(w) <1:

Assumption C.2 requires that the pdf of (Y;W ) be su¢ciently smooth. Note that this requires "
to have a smooth enough density. The support of f is required to be compact in order to guarantee
that f can be approximated by functions that vanish outside a compact set. Assumption C.3
restricts the kernel function that may be used. Assumption C.4 restricts the rate at which the
bandwidth, ¾N ; goes to zero.
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Theorem 1 :Let bFY jW=w(y) denote the kernel estimator for the conditional distribution of Y; con-
ditional on W = w; evaluated at Y = y: Suppose that Assumptions C.1-C.5 are satis…ed, for s0 ¸ 2.
Then,

supy2R
¯̄̄ bFY jW=w(y)¡ FY jW=w(y)

¯̄̄
! 0 in probability,

and

p
N¾(d=2)

³ bFY jW=w(y)¡ FY jW=w(y)
´
! N (0; VF ) in distribution,

where

VF = fR K(z)2g hFY jW=w(y) (1¡ FY jW=w(y)
i
[1=f(w)] :

The proof is given in Appendix A.
To study the asymptotic properties of the estimator for the unknown function m; we note that

the value of the function m at any given vector (w; e) is given by the composition of F¡1Y jW=w and
F
Y j eW=ew(ee); for some particular vector values w and ew; and some particular value ee: By F¡1Y jW=w

we denote the inverse of the conditional distribution of Y given that X; or a subvector, W; of X;
equals a value w; by F

Y j eW=ew(ee) we denote the conditional distribution of Y given that X; or a

subvector, fW; of X equals the value ew: The subvectors W and fW , of X; are not required to have
either the same dimension or common coordinates. The estimator is obtained by substituting the
true conditional distributions of Y by their kernel estimators. Hence, the consistency and asymptotic
normality of the estimator of m will follow from the consistency and asymptotic normality of the
functional, ©; of the kernel estimator for the distribution of (Y;X); which is de…ned by ©( bFY;X) =bF¡1Y jW=w

³ bF
Y j eW=ew(ee)´ : Let d1 denote the number of coordinates of fW; d2 denote the number of

coordinates of W; and let d = maxfd1; d2g: Let 1[¢] = 1 if the expression in [¢] is true; 1[¢] = 0
otherwise. Let

R
K(z)2 =

R
(
R
K(s; z) ds)2 dz; where s 2 R and z 2 Rd: Our next theorem will

make use of Assumptions C.1-C.3 and the following:

Assumption C.4’: As N !1; ln(N)=N¾dj+1N ! 0 and ¾s
0
N

q
N¾

2dj
N ! 0 (j = 1; 2):

Assumption C.5’: 0 < f(w); f( ew) < 1 and there exists ±; » > 0 such that 8s 2 N(m(w; e); »);
f(s;w) ¸ ±:

Theorem 2 :Let bn(w; e) = bF¡1Y jW=w

³ bF
Y j eW=ew(ee)´ and n(w; e) = F¡1Y jW=w

³
F
Y j eW=ew(ee)´ : Suppose

that Assumptions C.1-C.3, C.4’ and C.5’ are satis…ed, for s0 ¸ 2. Then,

bn(w; e) converges in probability to n(w; e);
and
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p
N¾

d=2
N (bn(w; e)¡ n(w; e))! N (0; Vn) in distribution,

where

Vn = fR K(z)2g
24FY jeW=ew(ee) ³1¡FY jeW=ew(ee)´

fY jW=w(n(w;e))2

35 h1[d1=d]
f(ew) + 1[d2=d]

f(w)

i

The proof is given in Appendix A.

3.4. Estimation when m is additive separable

In some cases, the economic model might imply that the functionm is the addition of two functions,
of which only one of them depends on epsilon. When, for example, the function m denotes a cost of
undertaking a particular project, Y may be the sum of a …xed and a variable cost. If " denotes the
unobservable price of a variable input, we may specify the model as Y = v1(x1; ") + v2(x2);where
x2 is a vector of variables that a¤ect the …xed cost, and (x1; ") represents the vector of prices of the
variable inputs.
When the function m is additively separable, we can develop estimators for m with improved

rates of convergence, using ideas similar to those presented in Linton and Nielsen (1995) for the
estimation of additive regression functions: Suppose that

(3.9) m(x1; x2; ") = v1(x1; ") + v2(x2);

for some unknown functions v1 and v2; and that the following is satis…ed:

Assumption S.1: E(v1(X1; ")jX2 = x2) = R
v1(x1; ") f(x1; "jX2 = x2) dx1 d" = 0:

Assumption S is a location normalization, which is needed to guarantee the joint identi…cation
of the nonparametric functions v1 and v2: Making use of this assumption and (3.9), it follows that

v2(x2) = E(Y jX2 = x2):

Hence, v2 can be estimated by the kernel estimator for the conditional expectation of Y given X2
(Nadaraya (1969), Watson (1969)): The asymptotic properties of such an estimator are well known
(Schuster (1972), Bierens (1987)). In particular, its asymptotic distribution does not depend on the
dimensionality of X1; only on that of X2: Let

V =
R
v2(x2) f(x2) dx2:

Since Y = m(x1; x2; "); (3.9) implies that

Y =
R
Y f(x1) dx1 =

R
v1(x1; ") f(x2) dx2 + V = v1(x1; ") + V

Thus, letting X1 = (X10; X11); it follows from the arguments in the beginning of this section that
if, for example, the following assumptions hold:
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Assumption S.2: " is independent of X11; conditional on X10:

Assumption S.3: For all X1; v1(X1; ¢) is strictly increasing in ":

then, for all (x1; e);

(3:10) F"jX10=x10(e) = FY jX1=x1 (v1(x1; e) + V )

Hence, when the function v1 satis…es any of the speci…cations given above for the function m; we
can obtain estimators for the conditional distribution of " given X01 and for the function v1: These
estimators are functionals of the kernel estimator for the conditional distribution of Y given X1
and of an estimator for V: The rates of convergence of such estimators will be independent of the
dimensionality of X2: Suppose, for example, that we specify that v1 does not depend on X10; and
for some x11 and all "

v1(x11; ") = ":

Let

bV = R bv2(x2) bf(x2) dx2.
Then, the estimators for the conditional distribution of " given X10 and for the function v1 are,
respectively

bF"jX10=x10(e) = bFY jX1=(x10;x11) ³e+ bV ´
and

bv1(x1; e) = bF¡1Y jX1=(x10;x11) ³ bFY jX1=(x10;x11) ³e+ bV ´´¡ bV
Since, as it is easy to show,

p
N( bV ¡ V ) possess a limiting distribution that is Normal, slight

modi…cations in the proofs of Theorems 1 and 2 yield the result that, when Assumptions C.1-C.5
are satis…ed for s0 ¸ 2, and d denotes the dimension of X1;

supe
¯̄̄ bF"jX10=x10(e)¡ F"jX10=x10(e)¯̄̄! 0 in probability

and

p
N¾(d=2)

³ bF"jX10=x10(e)¡ F"jX10=x10(e)´ ! N (0; VF ) ;

where

VF = fR K(z)2g hF"jX10=x10(e)(1¡ F"jX10=x10(e))i [1=f(x10; x11)] ;
and when assumptions C.1-C.3, C.4’ and C.5’ are satis…ed, for s0 ¸ 2
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bv1(x1; e)! v1(x1; e) in probability,

and

p
N¾

d=2
N (bv1(x1; e)! v1(x1; e))! N (0; Vn) in distribution,

where

Vn = fR K(z)2g ·F"jX10=x10(e)(1¡F"jX10=x10 (e))fY jX1=(x10;x11)(v1(x11;e))
2

¸ h
1

f(x10;x11)
+ 1

f(x10;x11)

i
and

R
K(z)2 =

R
K(z)2 dz; with z 2 Rd:

4. Multivariate Unobservable Random Term

Imposing some structure on the functionm; we can use the basic model described in the previous
section to identify and estimate random functions that depend on a vector of unobservable random
terms. Let X = (X0; X1) be such that X0 = w0; and X1 = (w1; :::; wK): Let " = ("1; :::; "K).
Assume that " is distributed independently of X1 conditional on X0: Assume, further, that the joint
distribution of ("1; :::; "K); conditional on X0; is the multiplication of the marginal distributions of
the "k’s; conditional on X0: For each k, let w0k denote a subvector of w0: Then, if the function
m can be expressed as a known function of K basic functions, each of which satis…es model (2.1),
it is possible, under some restrictions, to identify the distribution of " and each of the K random
functions.
In particular, our results will allow the identi…cation of each individual function in a summation,

when only the value of the sum of the random functions is observed. They will also allow the
identi…cation of each individual function in a multiplication, when only the total value of the
multiplication of the random functions is observed. The summation case would be important,
for example, if we were interested in identifying individual random behavior from observations on
only the aggregate value of a dependent variable. The multiplicative case would be important, for
example, if we were interested in estimating a multiplicative production function for some product,
when the product is produced using some intermediate inputs. If these intermediate products
were unobserved and were produced by some observable, more basic products, according to some
unknown random production functions, then, using the results below, we can determine that the
random production functions of the unobservable intermediate inputs are identi…ed, as well as the
distributions of the unobservable random terms, ":
We present the results for the case in which each of the K basic functions satis…es speci…cation

(I.1). Analogous results can be obtained by using the other possible speci…cations. Suppose that

(4.1) m(X; ") = r(n1(w01 ; w1; "1); :::; nK(w0K ; wK; "K))
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for some known, continuously di¤erentiable function r : RK ! R and some unknown, nonparametric
functions n1; :::; nK : Note that in this speci…cation, each subvector wk enters as an argument only
in the function nk: Some, or all, of the coordinates of w0 may enter as arguments in some, or all, of
the functions nk: Let F"jX0 denote the unknown distribution of "; conditional on X0: Let ®1; :::; ®K
be known numbers. We will make the following assumptions:

(A.i) At (®1; :::; ®K); the function r is strictly increasing in each of its arguments.

(A.ii) For each k; there exists a value wk of wk such that for all values of (w0k ; "k);
nk(w0k ; wk; "k) = "k:

(A.iii) For each k; and each (w0k ; wk; "k) such that wk 6= ewk; nk(w0k ; wk; "k) is strictly
increasing in "k;

(A.iv) For each k; there exists a value ewk of wk such that for all values of (w0k ; "k);
nk(w0k ; ewk; "k) = ®k;

(A.v) For all e1; :::; eK; f("1;:::;"K)jX0=w0(e1; :::; eK) =
QK
k=1 f"kjX0=w0(ek)

(A.v’) For all e1; :::; eK; f("1;:::;"K)(e1; :::; eK) =
QK
k=1 f"k(ek)

(A.vi) f("1;:::;"K)jX(e1; :::; eK) = f("1;:::;"K)jX0(e1; :::; eK);

(A.vi’) f("1;:::;"K)jX(e1; :::; eK) = f("1;:::;"K)(e1; :::; eK); and

Assumptions (A.ii) and (A.iii) impose on each function nk the speci…cation (I.1). Assumption
(A.iv) is used to …nd values of the vector X for which the conditional distribution of Y coincides
with the conditional distribution of nk: A very simple example of a function m that satis…es as-
sumptions (A.i)-(A.iv) is m(X; ") =

PK
k=1 "kwk; where wk 2 R: In this case, wk = 1 and for ®k = 0;ewk = 0: Assumption (A.v) states that, conditional on X0; the "k are independent across them,

while Assumption (A.v’) states that the "k are unconditionally independent across them. These
assumptions allow us to identify, respectively, the conditional and unconditional joint distribution of
"; from the marginal distributions. If these conditions are not satis…ed, we will only be able to show
the identi…cation of the marginal distributions of the "k: By Assumption (A.vi), " is independent of
X1; conditional on X0; while by Assumption (A.vi’), " is independent of X = (X0; X1): For each k;
let wk denote the value of X1 when wj = ewj for j 6= k; let wk denote the value of X1 when wk = wk
and wj = ewj for j 6= k; let Xk = (w0k ;X1); and, for each k; de…ne the function rk : R ! R by
rk(t) = r(®1; :::; ®k¡1; t; ®k+1; :::; ®K):We can now state the following result, whose proof is given in
Appendix A:

Theorem 3 :(3.I) If Assumptions (A.i)-(A.vi) are satis…ed, then F"jX0=w0 and m are identi…ed.
In particular, for all k and all (w0; wk; ek);

F"kjX0=w0(ek) = FY jX=(w0;wk)(rk(ek)) and
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nk(w0k ; wk; ek) = r
¡1
k

µ
F¡1Y jXk=(w0k ;w

k)

³
FY jX=(w0;wk)(rk(ek)

´¶
(3.II) If Assumptions (A.i)-(A.iv), (A.v’) and (A.vi’) are satis…ed, then F"jX0=w0 and m are

identi…ed. In particular, for all k and all (w0; wk; ek);

F"k(ek) = FY jX1=wk (rk(ek)) and

nk(w0k ; wk; ek) = r
¡1
k

µ
F¡1Y jXk=(w0k ;w

k)

³
FY jX1=wk (rk(ek))

´¶

Since, in the statement of the above theorem, the random functions, nk; and the marginal distrib-
utions of the "k’s are expressed in terms of functionals of the distribution of the observable variables,
we can de…ne estimators for these functions and distributions by substituting the true distribution of
(Y;X) by its kernel estimator, in a similar way as that followed in Section 3. The asymptotic proper-
ties of the estimators for the marginal distributions of the "k’s can be determined using the results of
Theorem 1. The consistency of the estimators for the nk functions follows by the convergence in prob-
ability of bF¡1Y jXk=(w0k ;w

k)

³ bFY jX=(w0;wk)(rk(ek)´ to F¡1Y jXk=(w0k ;w
k)

³
FY jX=(w0;wk)(rk(ek)

´
and the con-

vergence in probability of bF¡1Y jXk=(w0k ;w
k)

³ bFY jX1=wk (rk(ek))´ to F¡1Y jXk=(w0k ;w
k)

³
FY jX1=wk (rk(ek))

´
;

which can be established using the results of Theorem 2, and the continuity of the function r. The
asymptotic distribution of the estimators for the nk functions follow from the results of Theorem 2
and by the standard Delta method, using the continuous di¤erentiability of the function r: Hence,
under the assumptions of Theorem 2, we get that, when (A.i)-(A.vi) are satis…ed, and d equals the
dimension of (w0; wk);

p
N¾

d=2
N (bnk(w0k ; wk; ek)¡ nk(w0k ; wk; ek))! N (0; Vk) in distribution,

where

Vk = fR K(z)2g
24FY jX=(w0;wk)(rk(ek))³1¡FY jX=(w0;wk)(rk(ek))´

f
Y jXk=(w0k ;w

k)
(nk(w0k ;wk;ek))

2

35 · 1
f(w0;w

k)
+

1[w0k=w0]

f(w0k ;w
k)

¸
(¢k)

2

and

¢k =

0BB@@r¡1
k

µ
F¡1
Y jXk=(w0k ;w

k)

³
F
Y jX1=wk

(rk(ek))

´¶
@t

1CCA = 1µ
@rk(nk(w0k ;wk;ek))

@t

¶ :
When (A.i)-(A.iv), (A.v’) and (A.vi’) are satis…ed,

p
N¾

d=2
N (bnk(w0k ; wk; ek)¡ nk(w0k ; wk; ek))! N (0; V 0k) in distribution,

where

V 0k = f
R
K(z)2g

24FY jX1=wk (rk(ek))³1¡FY jX1=wk (rk(ek))´
f
Y jXk=(w0k ;w

k)
(nk(w0k ;wk;ek))

2

35 · 1[d1=d]

f(X1=w
k)
+ 1[d2=d]

f(w0k ;w
k)

¸
(¢0k)

2
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¢0
k =

0@@r¡1
k

³
F
Y jX1=wk

(rk(ek))

³
1¡F

Y jX1=wk
(rk(ek))

´´
@t

1A = 1µ
@rk(nk(w0k ;wk;ek))

@t

¶ :
d1 denotes the dimension of wk; d2 denotes the dimension of (w0k ; w

k); and d = maxfd1; d2g:

5. Estimation of Derivatives
In many cases in economics, we estimate a function because we are interested in its derivatives.
For example, we might estimate the pro…t function of a typical …rm because we are interested in
the supply and demand functions of that …rm. These can be derived by di¤erentiating the pro…t
function. In this section, we present estimators for the derivatives of the function m; for some of
the speci…cations presented in Section 2, and show their consistency and asymptotic normality. So,
for example, when m(x; ") represents the pro…t function of a particular …rm, x is the price of the
observable prices and " is the unobservable price of some input, we can use the derivatives of m
with respect to x to determine the supply of the output and the demand of the inputs, for which
their prices are observed. We can use the derivative of m with respect to " to determine the demand
for the input whose price is unobserved. For simplicity, we will only consider the case where " is
independent of X; and where the dimensionality of the subvectors W and fW; conditional on which
we have to calculate the conditional distribution of Y; is equal to the dimensionality of X:We next,
then, provide estimators for the derivatives of the function m; when " is independent of X and m
satis…es each of the following speci…cations:

(5.I) m(x; ") = "

(5.II) m(x; ") = ® and m(¸x; ¸") = ¸® for all ¸

(5.III) m(x1; x2; ") = s(x1; "¡ x2) and s(x1; ®) = y

Let ex and ee be such that , if m satis…es speci…cation (5.I),

ex = x and ee = e,
if m satis…es speci…cation (5.II),

ex = (e=")x and ee = (e=")®;
and if m satis…es speci…cation (5.III),

ex = (x1; e¡ ®) and ee = y:
Then, by the de…nition of m in each of these cases, it follows that
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(5.1)
Rm(x;e) f(s; x) ds = f(x) Ree f(s;ex) ds

f(ex) :

To obtain an estimator for the derivative of m with respect to x, we di¤erentiate both sides of (5.1)
with respect to x: This gives

Rm(x;e) @f(s;x)
@x

ds+ f(m(x; e); x) @m(x;e)
@x

= @f(x)
@x

FY jX=ex(ee);
which implies that

@m(x;e)
@x

= 1
f(m(x;e);x)

@f(x)
@x

FY jX=ex(ee)¡ 1
f(m(x;e);x)

Rm(x;e) @f(s;x)
@x

ds:

The estimator for the derivative of m with respect to x is then de…ned by:

(5.2)
d@m(x;e)
@x

= 1bf(bm(x;e);x) @bf(x)@x
bFY jX=ex(ee)¡ 1bf(bm(x;e);x) R bm(x;e) @bf(s;x)@x

ds;

where cm(x; e) is the estimator of m(x; e) de…ned in Section 3, bf(cm(x; e); x) is the kernel estimator
for the joint pdf of Y and X; evaluated at the vector (cm(x; e); x); bFY jX=ex(ee) is the kernel estimator
for the conditional cdf of Y given X = ex evaluated at Y = ee; and @ bf(x)=@x is the derivative with
respect to x of the kernel estimator for the pdf of X evaluated at X = x:

The following result establishes the consistency and asymptotic normality of d@m(x; e)=@x:

Theorem 4 : Suppose that Assumptions C.1-C.3, C.4’ and C.5’ are satis…ed for ew = ex; w = x; and
s0 ¸ 3. Then,

(i)
d@m(x;e)
@x

converges in probability to @m(x;e)
@x

;

and

(ii)
p
N¾

(L=2)+1
N

µ d@m(x;e)
@x

¡ @m(x;e)
@x

¶
! N (0; V@x) in distribution,

where

V@x =
F"(e) (1¡F"(e))

fY jX=x(m(x;e))2f(x)

·R ³R @K(s;z)
@z

ds
´ ³R @K(s;z)

@z
ds
´0
dz
¸

The asymptotic variance of d@m(x; e)=@x depends on the derivative of the kernel and on the vari-
ance due to the variance of bFY jX=x(m(x; e)): The asymptotic variance of bFY jX=ex(ee) does not a¤ect
the asymptotic variance of d@m(x; e)=@x; because bFY jX=ex(ee) does not depend on the value x: Since
fY jX=x(m(x; e)) = f"(e)=(@m(x; e)=@"); the variance increases the smaller is the density of " at e and
the larger is the derivative ofm with respect to ":Note that the rate of convergence of d@m(x; e)=@x is
slower than that of cm(x; e): This is because, in contrast to cm(x; e); d@m(x; e)=@x depends on deriv-
atives of the pdf of X and of the joint pdf of (Y;X); which converge at a rate ¾N¡times slower
than the estimators for those pdf’s.
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It is possible to derive also estimators for the derivatives of the function m with respect to ": In
this case, however, the estimators have di¤erent forms depending on the speci…cation of the function
m: Suppose that m satis…es speci…cation (5.I). Then, the de…nition of m implies thatRm(x;e)

f(s;x) ds

f(x)
=
R e
f(s;x) ds

f(x)
:

Hence,

@m(x;e)
@"

=
fY jX=x(e)

fY jX=x(m(x;e))
:

The estimator for the derivative of m with respect to "; in this case, is then de…ned by

(5.3)
d@m(x;e)
@"

=
bfY jX=x(e)bfY jX=x(bm(x;e)) :

Suppose now that m satis…es speci…cation (5.II). Then, by the de…nition of m it follows that

(5.4)
Rm(x;e)

f(s;x) ds

f(x)
=
R (e=")®

f(s;(e=")x) ds

f((e=")x)
:

Di¤erentiating both sides of (5.4) with respect to " gives

fY jX=x(m(x; e))
@m(x;e)
@"

= (®=")fY jX=(e=")x)((e=")®)

+

R (e=")®³@f(s;(e=")x)
@x

´0
(x=") ds

f((e=")x)
¡
³
@f((e=")x)

@x

´0
(x=")FY jX=(e=")x)((e=")®)

(f((e=")x))

which implies that

@m(x;e)
@"

=
(®=")fY jX=(e=")x)((e=")®)

fY jX=x(m(x;e))

+

R (e=")®³@f(s;(e=")x)
@x

´0
(x=") ds

fY jX=x(m(x;e)) f((e=")x)
¡
³
@f((e=")x)

@x

´0
(x=")FY jX=(e=")x)((e=")®)

fY jX=x(m(x;e)) (f((e=")x))
:

Hence, in this case, the estimator for @m(x; e)=@" is de…ned by

(5.5)
d@m(x;e)
@"

=
(®=")bfY jX=(e=")x((e=")®)bfY jX=x(bm(x;e))

+

R (e=")®³@bf(s;(e=")x)
@x

´0
(x=") dsbfY jX=x(bm(x;e)) bf((e=")x) ¡

³
@bf((e=")x

@x

´0
(x=")bfY jX=x(bm(x;e)) bf((e=")x) bFY jX=(e=")x ((e=")®) :

Finally, if m satis…es speci…cation (5.III), it follows by the structure of m that

@m(x1;x2;")
@"

= ¡@m(x1;x2;")
@x2

:

Hence,

(5.6)
d@m(x1;x2;")
@"

= ¡ d@m(x1;x2;")
@x2
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The next theorem establishes the asymptotic properties of the estimators for @m(x; e)=@" de…ned
in (5.3), (5.5) and (5.6).

Theorem 5 : Suppose that Assumptions C.1-C.3, C.4’ and C.5’ are satis…ed with ew = ex; w = x;
and s0 ¸ 3: Then,

(i)
d@m(x;e)
@"

converges in probability to @m(x;e)
@"

:

If m satis…es speci…cation (5.I) and m(x; e) 6= e,
p
N¾

(L+1)=2
N

µ d@m(x;e)
@e

¡ @m(x;e)
@e

¶
! N(0; VI;@") in distribution,

where

VI;@" = (
R
K(s; z)2dsdz)

½
fY jX=x(e)

fY jX=x(m(x;e))2 f(x)
+

fY jX=x(e)2

fY jX=x(m(x;e))3f(x)

¾
If m satis…es speci…cation (5.II),

p
N¾

(L=2)+1
N

µ d@m(x;e)
@"

¡ @m(x;e)
@"

¶
! N (0; VII;@") in distribution,

where

VII;@" =
F"(e) (1¡F"(e))

fY jX=x(m(x;e))2f((e=")x)

½³
x
"

´0 ·R ³R @K(s;z)
@z

ds
´ ³R @K(s;z)

@z
ds
´0
dz
¸ ³

x
"

´¾
:

And if m satis…es speci…cation (5.III),

p
N¾

(L=2)+1
N

µ d@m(x;e)
@"

¡ @m(x;e)
@"

¶
! N (0; VIII;@") in distribution,

where

VIII;@" =
F"(e) (1¡F"(e))

fY jX=x(m(x;e))2f(x)

·R ³R @K(s;z1;z2)
@z2

ds
´2
dz1dz2

¸

When m satis…es speci…cation (5.II), the rate of convergence of d@m(x; e)=@" is the same as that
of d@m(x; e)=@x because the slowest converging terms of both estimators depend on derivatives with
respect to x of the pdf of X and the joint pdf of (Y;X): The asymptotic variance of d@m(x; e)=@" is
due to the variance of the estimator of FY jX=ex(ee): Although the value of " at which the functionm is
evaluated a¤ects both, FY jX=x(m(x; e)) and FY jX=ex(ee); the estimator of the derivative of FY jX=ex(ee)
with respect to " converges at a slower rate than the estimator of the derivative of FY jX=x(m(x; e))
with respect to ":
When m satis…es speci…cation (5.I), FY jX=ex(ee) does not depend on the value " at which the

function m is evaluated. Hence, the asymptotic variance of d@m(x; e)=@" depends only on the
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asymptotic variance of the estimator of the derivative of FY jX=x(m(x; e)) with respect to ": The
rate of convergence of d@m(x; e)=@" is higher whenm satis…es speci…cation (5.I) than when it satis…es
speci…cation (5.II) because the derivative of FY jX=x(m(x; e)) with respect to " depends only on the
values, and not the derivatives, of the pdf’s of X and of (Y;X):
When m satis…es either speci…cation (5.I) or speci…cation (5.II), the asymptotic covariance

between d@m(x; e)=@x and d@m(x; e)=@" is zero. When m satis…es speci…cation (5.II), this is because
the asymptotic distributions of these estimators are driven by kernel estimators of the pdf of (Y;X)
evaluated at di¤erent points. When m satis…es speci…cation (5.I), the zero asymptotic covariance
is a consequence of the di¤erent rates of convergence of the estimators.

6. Simulations
To provide an indication of how the new estimators perform in practice, we present below the results
of simulations performed using the following two designs:

² Design I: Y = X + ²;

where X » N(0; 1) and ² » N(0; 1).
² Design II: Y = 33

44
X4 (¡")¡3

where X » N(6; 1) and ² » N(¡6; 1).
The …rst design was chosen to evaluate how badly the estimator may perform, relative to the

best estimator that one can use when the function is additively separable in " and its parametric
form is known. Also, since the function satis…es speci…cations (5.I) and (5.II), in Section 5, it allows
one to evaluate the e¤ect of the two normalizations. This design was estimated using the …rst
normalization with x = " = 1; ® = 2 ; and using the second normalization with x = 0: Design II is
the pro…t function generated from a production function of the form p(z) = za where a = :75; X
is the price of the output, and ¡" is the price of the input z: We write this function in terms of
¡" to transform it so that it is strictly increasing in ": Alternatively, we could have calculated the
estimators under the restriction that m is strictly decreasing in ": This would have only modi…ed
the estimator for bF"(e): Instead of deriving bF"(e) from the value of bFY jX=x(y) at a particular y and
x; we would have derived bF"(e) from 1¡ bFY jX=x(y) at the same particular y and x: The expression
for cm would have been the same as for the strictly increasing case. We used this design with x
= " = 6 and ® = 6 ¢ 33=44: The normal distributions, which were chosen for X and " in these
designs, violate the assumption that the support of the observable variables is compact, but, since
we are dealing with a …nite set of data, we could have obtained the same results if we speci…ed the
distributions of X and " so that they are equal to the chosen distributions only on a large enough
compact set.
For each design, we run 500 simulations of 500 observations each. The estimators of the joint

pdf and cdf of (Y;X)were obtained using a multiplicative Gaussian kernel. The bandwidths were
chosen to roughly minimize the integrated squared error of bfY;X : R ( bfY;X(y; x) ¡ fY;X(y; x))2dydx:
The following table speci…es the bandwidth sizes that were used for each design:

¾Y ¾X
Design I 0.4031 0.2928
Design II 0.0596 0.2619
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The results obtained for Design I, Normalization I(where m satis…es speci…cation (II)) and for
Design I, Normalization II (wherem satis…es speci…cation (I)) are presented at the end of the paper,
together with the results obtained when the function m is estimated by Least Squares. The latter
estimator is denoted by fmLS: The estimators are evaluated at points where x equals the 25th, 50th,
and 75th quantile of the distribution of X; and where " equals the 10th, 50th, and 90th quantile
of its distribution. We do not look at the same quantiles for X and " to avoid considering too
many points where the value of the function m is known. For each point, the tables show the bias,
variance, mean square error, and asymptotic variance of the estimator.
Comparing the results obtained from both normalizations, we can see that, at the evaluated

points, the MSE’s of the estimators obtained using Normalization I are, in general, larger than
those obtained using Normalization II. The MSE’s of cm and bF" obtained using normalization I
can be up to 3 and 4 times larger, respectively, than when using Normalization II. The MSE’s ofd@m=@x can be up to 1.5 times larger, and that of d@m=@" can be up to 18 times larger than when
Normalization II is used. Comparing the results obtained from both normalization with those of
the Least Squares (LS) estimators, we can see that the MSE of cm when using Normalization I can
be up to 25 times larger than when using LS, while the MSE of cm when using Normalization II can
be up to 7 times larger than that of the LS estimator. The MSE of d@m=@x can be up to 52 times
(for Normalization I) and 45 times (for Normalization II) than the MSE of the LS estimator. The
MSE of the LS estimator for d@m=@" is zero. So, the nonparametric estimator for d@m=@" obviously
performs much worse than the LS estimator.
The superiority of the LS estimator gets reversed when the function m is nonlinear and nonad-

ditive in ": Following the previous results, we present the results for the nonparametric estimator
using Normalization I and the data generated by Design II, together with the corresponding results
for the LS estimators.
From these results, we can see that the MSE of the LS estimator of m can be 1656 times

larger than that of the nonparametric estimator. The di¤erence is lessened when we compare
the estimators for the derivatives. The MSE of the LS estimator of @m=@x is 101 times larger
than that of the nonparametric estimator at the point in the southwest corner, but it is 16 times
smaller than the nonparametric estimator at the southeast corner. The relative performance of the
nonparametric estimator of @m=@" is better than the relative performance of the nonparametric
estimator of @m=@x: The MSE of the LS estimator of @m=@" is between 139 and 255 times larger
than that of the nonparametric estimator at the points in the north, while its MSE is between
15 and 26 times larger than the MSE of the nonparametric estimator at the points in the south.
We should note that the nonparametric estimators for the derivatives of m are very jagged, which
suggest that the bandwidths used are too small. When the bandwidths are increased to twice their
previous sizes, the MSE’s of d@m=@x and d@m=@" are, in general, smaller. We present these MSE’s
following the previous results.
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Design I / Normalization I

x e m Bias(cm) V ar(cm ) MSE(cm Avar(cm)
-0.6745 -1.2816 -1.956041 -0.055164 0.027445 0.030488 0.049802
-0.6745 0.0000 -0.674490 0.045053 0.013064 0.015093 0.017112
-0.6745 1.2816 0.607062 0.158777 0.040833 0.066043 0.049802
0.0000 -1.2816 -1.281552 -0.103554 0.035620 0.046344 0.046197
0.0000 0.0000 0.000000 0.000000 0.000000 0.000000 0.015174
0.0000 1.2816 1.281552 0.115072 0.039464 0.052706 0.046197
0.6745 -1.2816 -0.607062 -0.166698 0.037238 0.065027 0.049802
0.6745 0.0000 0.674490 -0.054845 0.011865 0.014873 0.017112
0.6745 1.2816 1.956041 0.049250 0.029154 0.031580 0.049802

e F Bias( bF ) V ar( bF ) MSE( bF ) AV ar( bF )
-1.6449 0.05 0.005751 0.000593 0.000626 0.000887
-0.6745 0.25 0.008865 0.000766 0.000845 0.001137
0.0000 0.50 -0.001386 0.000909 0.000911 0.001207
0.6745 0.75 -0.007094 0.000712 0.000762 0.001137
1.6449 0.95 -0.006719 0.000546 0.000591 0.000887

x e @m=@x Bias( d@m=@x) V ar( d@m=@x) MSE( d@m=@x) Avar( d@m=@x)
-0.6745 -1.2816 1.000000 -0.096347 0.093556 0.102839 0.103337
-0.6745 0.0000 1.000000 -0.071001 0.060002 0.065043 0.055549
-0.6745 1.2816 1.000000 -0.057210 0.088162 0.091435 0.103337
0.0000 -1.2816 1.000000 -0.065292 0.079831 0.084094 0.082313
0.0000 0.0000 1.000000 -0.064566 0.051048 0.055217 0.044248
0.0000 1.2816 1.000000 -0.094097 0.071034 0.079888 0.082313
0.6745 -1.2816 1.000000 -0.087892 0.089573 0.097298 0.103337
0.6745 0.0000 1.000000 -0.079195 0.060462 0.066734 0.055549
0.6745 1.2816 1.000000 -0.098362 0.100482 0.110157 0.103337

x e @m=@" Bias( d@m=@") V ar( d@m=@") MSE( d@m=@") Avar( d@m=@")
-0.6745 -1.2816 1.000000 0.141215 0.339550 0.359492 0.187114
-0.6745 0.0000 1.000000 0.074860 0.086538 0.092142 0.044248
-0.6745 1.2816 1.000000 0.112037 0.298026 0.310578 0.187114
0.0000 -1.2816 1.000000 0.132217 0.325391 0.342872 0.187114
0.0000 0.0000 1.000000 0.064566 0.051048 0.055217 0.044248
0.0000 1.2816 1.000000 0.115924 0.304955 0.318394 0.187114
0.6745 -1.2816 1.000000 0.134001 0.327781 0.345737 0.187114
0.6745 0.0000 1.000000 0.072430 0.085134 0.090380 0.044248
0.6745 1.2816 1.000000 0.116829 0.316786 0.330435 0.187114
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Design I / Normalization II

x e m Bias(cm) V ar(cm) MSE(cm) Avar(cm)
-0.6745 -1.2816 -1.956041 0.039292 0.018318 0.019862 0.031832
-0.6745 0.0000 -0.674490 0.045053 0.013064 0.015093 0.017112
-0.6745 1.2816 0.607062 0.045520 0.018562 0.020634 0.031832
0.0000 -1.2816 -1.281552 -0.000000 0.000000 0.000000 0.028227
0.0000 0.0000 0.000000 0.000000 0.000000 0.000000 0.015174
0.0000 1.2816 1.281552 0.000000 0.000000 0.000000 0.028227
0.6745 -1.2816 -0.607062 -0.062862 0.017918 0.021869 0.031832
0.6745 0.0000 0.674490 -0.054845 0.011865 0.014873 0.017112
0.6745 1.2816 1.956041 -0.053940 0.018461 0.021370 0.031832

e F Bias( bF ) V ar( bF ) MSE( bF ) AV ar( bF )
-1.6449 0.05 0.020293 0.000195 0.000607 0.000229
-0.6745 0.25 0.022256 0.000676 0.001172 0.000906
0.0000 0.50 -0.001386 0.000909 0.000911 0.001207
0.6745 0.75 -0.024429 0.000717 0.001313 0.000906
1.6449 0.95 -0.020745 0.000194 0.000625 0.000229

x e @m=@x Bias( d@m=@x) V ar( d@m=@x) MSE( d@m=@x) Avar( d@m=@x)
-0.6745 -1.2816 1.000000 -0.079104 0.087267 0.093525 0.103337
-0.6745 0.0000 1.000000 -0.071001 0.060002 0.065043 0.055549
-0.6745 1.2816 1.000000 -0.069602 0.081449 0.086293 0.103337
0.0000 -1.2816 1.000000 -0.053773 0.072362 0.075253 0.082313
0.0000 0.0000 1.000000 -0.064566 0.051048 0.055217 0.044248
0.0000 1.2816 1.000000 -0.081356 0.068593 0.075212 0.082313
0.6745 -1.2816 1.000000 -0.095052 0.079552 0.088587 0.103337
0.6745 0.0000 1.000000 -0.079195 0.060462 0.066734 0.055549
0.6745 1.2816 1.000000 -0.077366 0.089999 0.095985 0.103337

x e @m=@" Bias( d@m=@") V ar( d@m=@") MSE( d@m=@") Avar( d@m=@")
-0.6745 -1.2816 1.000000 0.006771 0.023265 0.023311 0.059803
-0.6745 0.0000 1.000000 -0.001166 0.011048 0.011050 0.026308
-0.6745 1.2816 1.000000 0.001031 0.021021 0.021022 0.059803
0.0000 -1.2816 1.000000 0.000000 0.000000 0.000000 0.053030
0.0000 0.0000 1.000000 -0.000000 0.000000 0.000000 0.023329
0.0000 1.2816 1.000000 0.000000 0.000000 0.000000 0.053030
0.6745 -1.2816 1.000000 0.002536 0.019633 0.019640 0.059803
0.6745 0.0000 1.000000 -0.002955 0.010270 0.010279 0.026308
0.6745 1.2816 1.000000 0.007917 0.023745 0.023807 0.059803
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Design I / Least Squares

x e m Bias(fmLS) V ar(fmLS) MSE(fmLS)
-0.6745 -1.2816 -1.956041 -0.004112 0.002865 0.002882
-0.6745 0.0000 -0.674490 -0.004112 0.002865 0.002882
-0.6745 1.2816 0.607062 -0.004112 0.002865 0.002882
0.0000 -1.2816 -1.281552 -0.000076 0.002090 0.002090
0.0000 0.0000 0.000000 -0.000076 0.002090 0.002090
0.0000 1.2816 1.281552 -0.000076 0.002090 0.002090
0.6745 -1.2816 -0.607062 0.003961 0.003203 0.003219
0.6745 0.0000 0.674490 0.003961 0.003203 0.003219
0.6745 1.2816 1.956041 0.003961 0.003203 0.003219

x e @m=@x Bias(@fmLS=@x) V ar(@fmLS=@x) MSE(@fmLS=@x)
-0.6745 -1.2816 1.000000 0.005984 0.002075 0.002111
-0.6745 0.0000 1.000000 0.005984 0.002075 0.002111
-0.6745 1.2816 1.000000 0.005984 0.002075 0.002111
0.0000 -1.2816 1.000000 0.005984 0.002075 0.002111
0.0000 0.0000 1.000000 0.005984 0.002075 0.002111
0.0000 1.2816 1.000000 0.005984 0.002075 0.002111
0.6745 -1.2816 1.000000 0.005984 0.002075 0.002111
0.6745 0.0000 1.000000 0.005984 0.002075 0.002111
0.6745 1.2816 1.000000 0.005984 0.002075 0.002111

x e @m=@" Bias(@fmLS=@") V ar(@fmLS=@") MSE(@fmLS=@")
-0.6745 -1.2816 1.000000 0.000000 0.000000 0.000000
-0.6745 0.0000 1.000000 0.000000 0.000000 0.000000
-0.6745 1.2816 1.000000 0.000000 0.000000 0.000000
0.0000 -1.2816 1.000000 0.000000 0.000000 0.000000
0.0000 0.0000 1.000000 0.000000 0.000000 0.000000
0.0000 1.2816 1.000000 0.000000 0.000000 0.000000
0.6745 -1.2816 1.000000 0.000000 0.000000 0.000000
0.6745 0.0000 1.000000 0.000000 0.000000 0.000000
0.6745 1.2816 1.000000 0.000000 0.000000 0.000000
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Design II / Normalization I

x e m Bias(cm) V ar(cm) MSE(cm) Avar(cm)
5.3255 -7.2816 0.219734 0.002511 0.000572 0.000579 0.000456
5.3255 -6.0000 0.392749 0.015278 0.000788 0.001021 0.000738
5.3255 -4.7184 0.807553 -0.029261 0.008057 0.008914 0.014678
6.0000 -7.2816 0.354044 0.006306 0.001094 0.001133 0.001099
6.0000 -6.0000 0.632813 0.000000 0.000000 0.000000 0.001698
6.0000 -4.7184 1.301161 -0.094294 0.022210 0.031101 0.035347
6.6745 -7.2816 0.542156 0.001258 0.001945 0.001947 0.002778
6.6745 -6.0000 0.969041 -0.025075 0.003811 0.004439 0.004491
6.6745 -4.7184 1.992501 -0.212119 0.046652 0.091647 0.089355

e F Bias( bF ) V ar( bF ) MSE( bF ) AV ar( bF )
-7.6449 0.05 0.028041 0.000915 0.001701 0.000992
-6.6745 0.25 0.030218 0.001118 0.002031 0.001271
-6.0000 0.50 -0.006567 0.001260 0.001303 0.001350
-5.3255 0.75 -0.037964 0.001188 0.002629 0.001271
-4.3551 0.95 -0.032881 0.001011 0.002092 0.000992

x e @m=@x Bias( d@m=@x) V ar( d@m=@x) MSE( d@m=@x) Avar( d@m=@x)
5.3255 -7.2816 0.165042 0.006869 0.001542 0.001590 0.001183
5.3255 -6.0000 0.294994 -0.015741 0.004668 0.004915 0.002993
5.3255 -4.7184 0.606554 -0.070023 0.075588 0.080491 0.038067
6.0000 -7.2816 0.236029 0.004099 0.003610 0.003627 0.002447
6.0000 -6.0000 0.421875 -0.015777 0.011761 0.012010 0.006190
6.0000 -4.7184 0.867441 -0.142476 0.120034 0.140333 0.078719
6.6745 -7.2816 0.324912 -0.014610 0.009300 0.009513 0.007205
6.6745 -6.0000 0.580743 -0.050031 0.037556 0.040059 0.018223
6.6745 -4.7184 1.194099 -0.192415 0.408242 0.445265 0.231742

x e @m=@" Bias( d@m=@") V ar( d@m=@") MSE( d@m=@") Avar( d@m=@")
5.3255 -7.2816 0.090530 0.025446 0.002902 0.003549 0.002143
5.3255 -6.0000 0.196374 -0.007714 0.002760 0.002819 0.002384
5.3255 -4.7184 0.513444 -0.069647 0.105880 0.110731 0.068928
6.0000 -7.2816 0.145866 0.017416 0.006009 0.006312 0.005563
6.0000 -6.0000 0.316406 -0.015777 0.011761 0.012010 0.006190
6.0000 -4.7184 0.827281 -0.147779 0.215877 0.237716 0.178945
6.6745 -7.2816 0.223368 0.001552 0.010970 0.010972 0.013045
6.6745 -6.0000 0.484521 -0.062615 0.022314 0.026234 0.014515
6.6745 -4.7184 1.266836 -0.252486 0.946042 1.009791 0.419617
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Design II / Least Squares

x e m Bias(fmLS) V ar(fmLS) MSE(fmLS)
5.3255 -7.2816 0.219734 -0.978663 0.000804 0.958585
5.3255 -6.0000 0.392749 0.129874 0.000804 0.017671
5.3255 -4.7184 0.807553 0.996621 0.000804 0.994058
6.0000 -7.2816 0.354044 -0.734285 0.001560 0.540735
6.0000 -6.0000 0.632813 0.268498 0.001560 0.073651
6.0000 -4.7184 1.301161 0.881700 0.001560 0.778955
6.6745 -7.2816 0.542156 -0.543710 0.005129 0.300750
6.6745 -6.0000 0.969041 0.310956 0.005129 0.101822
6.6745 -4.7184 1.992501 0.569048 0.005129 0.328945

x e @m=@x Bias(@fmLS=@x) V ar(@fmLS=@x) MSE(@fmLS=@x)
5.3255 -7.2816 0.165042 0.396400 0.003091 0.160224
5.3255 -6.0000 0.294994 0.266448 0.003091 0.074086
5.3255 -4.7184 0.606554 -0.045112 0.003091 0.005127
6.0000 -7.2816 0.236029 0.325413 0.003091 0.108985
6.0000 -6.0000 0.421875 0.139568 0.003091 0.022571
6.0000 -4.7184 0.867441 -0.305998 0.003091 0.096726
6.6745 -7.2816 0.324912 0.236530 0.003091 0.059038
6.6745 -6.0000 0.580743 -0.019301 0.003091 0.003464
6.6745 -4.7184 1.194099 -0.632657 0.003091 0.403346

x e @m=@" Bias(@fmLS=@") V ar(@fmLS=@") MSE(@fmLS=@")
5.3255 -7.2816 0.090530 0.909470 0.000000 0.827135
5.3255 -6.0000 0.196374 0.803626 0.000000 0.645814
5.3255 -4.7184 0.513444 0.486556 0.000000 0.236737
6.0000 -7.2816 0.145866 0.854134 0.000000 0.729545
6.0000 -6.0000 0.316406 0.683594 0.000000 0.467300
6.0000 -4.7184 0.827281 0.172719 0.000000 0.029832
6.6745 -7.2816 0.223368 0.776632 0.000000 0.603157
6.6745 -6.0000 0.484521 0.515479 0.000000 0.265719
6.6745 -4.7184 1.266836 -0.266836 0.000000 0.071202

31



Design II / Normalization I / Large bandwidth

x e @m=@x MSE( d@m=@x)
5.3255 -7.2816 0.165042 0.000465
5.3255 -6.0000 0.294994 0.003486
5.3255 -4.7184 0.606554 0.062995
6.0000 -7.2816 0.236029 0.000745
6.0000 -6.0000 0.421875 0.011162
6.0000 -4.7184 0.867441 0.158398
6.6745 -7.2816 0.324912 0.002422
6.6745 -6.0000 0.580743 0.032012
6.6745 -4.7184 1.194099 0.343780

x e @m=@" MSE( d@m=@")
5.3255 -7.2816 0.090530 0.001806
5.3255 -6.0000 0.196374 0.001696
5.3255 -4.7184 0.513444 0.085641
6.0000 -7.2816 0.145866 0.000910
6.0000 -6.0000 0.316406 0.011162
6.0000 -4.7184 0.827281 0.269792
6.6745 -7.2816 0.223368 0.001824
6.6745 -6.0000 0.484521 0.039744
6.6745 -4.7184 1.266836 0.711056

7. Summary
We have presented estimators for models in which the value of a dependent variable is determined
by a nonparametric function that is not necessarily additive in an unobservable random vector. The
estimators for the distribution of the unobservable random variable, the nonparametric function,
and the derivatives of the nonparametric function were derived and were shown to be consistent and
asymptotically normal. The estimators were de…ned as nonlinear functionals of a kernel estimator for
the distribution of the observable variables. To derive the asymptotic distributions of the estimators,
we …rst linearized the functionals, by calculating their Hadamard-derivatives, and then applied a
Delta method, as developed in Ait-Sahalia (1994) and Newey (1994).
The results of some simulations indicate that the method may outperform estimators that require

specifying a parametric structure for the function to be estimated, when the speci…ed structure is
incorrect. Since one can rarely …nd a parametric speci…cation that would perfectly …t the true
function, there seems to be a bene…t to using the new estimators.
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Appendix A
We present here the proofs of Theorems 1, 2, 5, and 6. To prove these theorems, we will use a Delta
Method, like the ones developed in Ait-Sahalia (1994) and Newey (1994).

Proof of Theorem 1: Let F denote the joint cdf of (Y;X); f(y; w) denote its probability den-
sity function (pdf), and f(w) denote the marginal pdf of w: For any function G : R1+L ! R;
de…ne g(y; w) = @1+LG(y; w)=@y@w; g(w) =

R
g(y;w) dy; g(w) =

R
g(y;w) dy ; GyjW=w0(y

0) =³R y0
¡1 g(y; w

0)ds
´
=g(w0); and gGY (y; w) = R y g(s; w) ds = R

1[s · y] g(s; w)ds where 1[¢] = 1 if
[¢] is true, and it equals zero otherwise. Let Cdenote a compact set in R1+L that strictly includes
£; the compact support of (Y £X): Let D denote the set of all functions G : R1+L ! R such that
g(y; w) exists and vanishes outside C. Let D denote the set of all functions gGY that are derived
from some G in D. Since there is a 1-1 relationship between functions in D and functions in D;we
can de…ne a functional on D or on D without altering its de…nition. De…ne then the functional
¤(¢) by ¤(G) = GY jW=w(y): Then, ¤( bF ) = bFY jW=w(y) and ¤(F ) = FY jW=w(y): We omit writing
explicitly the dependence of ¤ on y and w, for brevity of exposition.
Let kGk denote the sup norm of g(y; w): Then, for any H such that H vanishes outside a

compact set and kHk is su¢ciently small, we have that, jh(w)j · a kHk ;
¯̄̄R y
¡1 h(s; w)ds

¯̄̄
· a kHk ;

and jf(w) + h(w)j ¸ b jf(w)j for some 0 < a; b <1: Moreover,

(1) ¤(F +H)¡ ¤(F ) = (F +H)Y jW=w(y)¡ FY jW=w(y)

= D¤(F;H) +R¤(F;H); where

D¤(F;H) =

R y
¡1 h(s;w)ds¡h(w) FY jW=w(y)

f(w)
and

R¤(F;H) =
·R y

¡1 h(s;w)ds¡h(w) FY jW=w(y)

f(w)

¸ h
h(w)

f(w)+h(w)

i
:

It follows that for some c <1;

(2) jD¤(F;H)j · c
f(w)

kHk and jR¤(F;H)j · c
f(w)2

kHk2 :

Note the this implies that the functional ¤ is continuous.

LetH = bF¡F : From (1) and (2), ¯̄̄ bFY jW=w(y) ¡ FY jW=w(y)
¯̄̄
· c

f(w)

°°° bF ¡ F°°°+ c
f(w)2

°°° bF ¡ F°°°2 : By
Assumptions (A.1)-(A.4) and Lemma B.3 in Newey (1994),

°°° bF ¡ F°°° ! 0 in probability. Hence,

supy2R
¯̄̄ bFY jW=w(y) ¡ FY jW=w(y)

¯̄̄
! 0 in probability.

To prove the result about the asymptotic distribution, we note that by (1) and (2), ¤ is
Hadamard di¤erentiable at F . It then follows by Theorem 3.9.4 in van der Vaart and Wellner
(1996) and the Lemma in Appendix B thatq

N¾2LN

µ
¤(
beF Y )¡ ¤( eFY )¶¡D¤µF;qN¾2LN ( beF Y ¡ eFY )¶

converges in outer probability to 0. Since
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D¤
µ
(F;

q
N¾2LN (

beF Y ¡ eFY )¶ = q
N¾2LN

µR (1[s·y]¡FY jW=w(y))
f(w)

³ bf(s; w)¡ f(s;w)´ ds¶ ;
it follows by the Lemma in Appendix B that

D¤
µ
(F;

q
N¾2LN (

beF Y ¡ eFY )¶! N(0; VF )

where

VF =
nR
(
R
K(s; z)ds)2 dz

o½³
1

f(w)2

´ R ³
1 [s · y]¡ FY jW=w(y)

´2
f(s; w)ds

¾
=
nR
(
R
K(s; z)ds)2 dz

o ³
1

f(w)2

´ h
FY jW=w(y)

³
1¡ FY jW=w(y)

´i
Hence,q

N¾2LN
³ bFY jW=w(y)¡ FY jW=w(y)

´
=
q
N¾2LN

µ
¤(
beF Y )¡ ¤( eFY )¶

! N(0; VF ):

Proof of Theorem 2: Let F (y;w) denote the distribution function (cdf) of the vector of observ-
able variables (Y;X); f(y;w) denote its probability density function (pdf), and f(x) denote the
marginal pdf of X; and FY jX=x denote the conditional cdf of Y given X = x: For any subvector
W of X; let f(w) denote the marginal pdf of W when W = w; f(yjw) denote the conditional
pdf of Y; conditional on W = w; and FY jW=w(y) denote the conditional cdf of Y; conditional on
W = w: For any function G : R1+L ! R; de…ne g(y; w) = @LG(y; w)=@y@w; g(w) =

R
g(y; w)

dy; g(w) =
R
g(y; w) dy ; GY jW=w0(y

0) =
³R y0
¡1 g(y;w

0)ds
´
=g(w0); and gGY (y; w) = R y g(s; w)ds =R

1[s · y] g(s; w) ds where 1[¢] = 1 if [¢] is true, and it equals zero otherwise. Further, for any
subvector W of X; de…ne g(w) = g(y; w) =

R
g(y;w; z) dz; g(w) =

R
g(y; w; z) dy dz; GY jW=w0(y

0)
=
³R y0
¡1 g(y; w

0)ds
´
=g(w0); and gGY (y;w) = R y g(s;w)ds = R

1[s · y] g(s; w) ds where 1[¢] = 1 if [¢]
is true, and it equals zero otherwise, and where z denotes the value of the coordinates of X that
are not included in W: Let Cdenote a compact set in RL that strictly includes £: Let D denote the
set of all functions G : RL ! R such that g(y; x) vanishes outside C. Let D denote the set of all
functions gGY that are derived from some G in D. Since there is a 1-1 relationship between functions
in D and functions in D;we can de…ne a functional on D or on D without altering its de…nition.
Let W and fW be two subvectors of X; not necessarily corresponding to the same coordinates of X:
De…ne the functional ©(¢) by ©(G) = G¡1Y jW=w

³
G
Y j eW=ew(ee)´ ; where G¡1Y jW=w denotes an arbitrary

element of the set G¡1Y jW=w; if G
¡1
Y jW=w is not a singleton. Then, ©(F ) = ©(

eFY ) = n(w; e) and ©( bF )
= ©(

dgFY ) = bn(w; e):
De…ne the functionals ´ and º by ´(G) = GY jW=w(©(G)); and º(G) = GY jW=ew(ee): Then, ©(F )

satis…es the equation: ´(F ) = º(F ) and, for any H; ©(F +H) satis…es the equation: ´(F +H) =
(F +H)Y jW=w(©(F +H)) = (F +H)Y jW=ew(ee) = º(F +H):
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Let kGk denote the sup norm of g(y; x): Then, if H 2D, there exists ½1 > 0 such that if kHk · ½1
then, for some 0 < a; b <1; all y and all s 2 N(m(w; e); »);

(1) jh(w)j · a kHk ;
¯̄̄R y
¡1 h(s;w)ds

¯̄̄
· a kHk ;

jf(w) + h(w)j ¸ b jf(w)j ; and f(s; w) + h(s;w) ¸ b jf(s;w)j ;

and, by (1) and (2) in the proof of Theorem 1, for some d <1 and all w0 such that 0 < f(w0) <1;

(2) supy2R
¯̄̄
(F +H)Y jW=w0(y)¡ FY jW=w0(y)

¯̄̄
· dkHk

f(w0) :

Using arguments similar to those used in Matzkin and Newey (1993), we will show that there exist
½ · ½1 such that if kHk · ½ then

(3) (F +H)¡1Y jW=w(FY j eW=ew(ee)) 2 N(m(w; e); »):
To show (3), we let r¤ = F¡1Y jW=w(F

¡1
Y j eW=ew(ee)); r = (F+H)¡1Y jW=w(F

¡1
Y j eW=ew(ee)); and s = FY jW=w(r); so

that r = F¡1Y jW=w(s):Then,

r ¡ r¤ = (F +H)¡1Y jW=w(FY j eW=ew(ee))¡ F¡1Y jW=w(FY j eW=ew(ee))
= F¡1Y jW=w(s)¡ F¡1Y jX=w(FY j eW=ew(ee))
=

Ã
1

fY jW=w(FY jeW=ew(ee)
!
(s¡ F

Y j eW=ew(ee)) + Rem1

where, for some j1 < 1; jRem1j · j1
¯̄̄
s¡ F

Y j eW=ew(ee)¯̄̄2 ; and where the last equality follows from
Taylor’s Theorem. Since (s¡F

Y j eW=ew(ee)) = (FY jW=w(r)¡ (F +H)Y jW=w(r); it follows from (2) that

jr ¡ r¤j ·
¯̄̄̄
¯ 1
fY jW=w(FY jeW=ew(ee))

¯̄̄̄
¯ dkHkf(w)

+ j1d2kHk2
f(w)2

:

Hence, if kHk is su¢ciently small, jr ¡ r¤j < »;which implies that (F + H)¡1Y jW=w(FY j eW=ew(ee)) 2
N(m(w; e); »):
Consider then the H 0s such that kHk · ½:We will show, again using arguments similar to those

used in Matzkin and Newey (1993) that for some c1 <1;

(4) j©(F +H)¡ ©(F )j · c1 kHk :

For this we note that

(5) ©(F +H)¡©(F )

= (F +H)¡1Y jW=w

³
(F +H)

Y j eW=ew(ee)´¡ F¡1Y jW=w

³
F
Y j eW=ew(ee)´

=
n
(F +H)¡1Y jW=w

³
(F +H)

Y j eW=ew(ee)´¡ (F +H)¡1Y jW=w

³
F
Y j eW=ew(ee)´o

35



+
n
(F +H)¡1Y jW=w

³
F
Y j eW=ew(ee)´¡ F¡1Y jW=w

³
F
Y j eW=ew(ee)´o

To obtain an expression for the di¤erence in the …rst brackets of (5), we note that by Taylor’s
Theorem,

(F +H)¡1Y jW=w

³
(F +H)

Y j eW=ew(ee)´¡ (F +H)¡1Y jW=w

³
F
Y j eW=ew(ee)´

=
@(F+H)¡1

Y jW=w

@r

³
F
Y j eW=ew(ee)´ h(F +H)Y j eW=ew(ee)¡ FY j eW=ew(ee)i+Rem1

where, for some j2 <1; jRem2j ·
¯̄̄
(F +H)

Y j eW=ew(ee)¡ FY j eW=ew(ee)¯̄̄2 : Hence, since¯̄̄̄
@(F+H)¡1

Y jW=w

@y

³
F
Y j eW=ew(ee)´

¯̄̄̄
=

¯̄̄̄
¯ 1
(f+h)Y jW=w((F+H)

¡1
Y jW=w

(F
Y jeW=ew(ee)))

¯̄̄̄
¯

=

¯̄̄̄
¯ f(w)+h(w)

f((F+H)¡1
Y jW=w

(F
Y jeW=ew(ee));w)+h((F+H)¡1Y jW=w

(F
Y jeW=ew(ee));w)

¯̄̄̄
¯

is bounded by (1) and (3), and, by (2),¯̄̄
(F +H)

Y j eW=ew(ee)¡ FY j eW=ew(ee)¯̄̄ · dkHk
f(w)

it follows that for some a2 <1;

(6)
¯̄̄
(F +H)¡1Y jW=w

³
(F +H)

Y j eW=ew(ee)´¡ (F +H)¡1Y jW=w

³
F
Y j eW=ew(ee)´¯̄̄ · a2 kHk :

To obtain an expression for the di¤erence in the second brackets of (5), we note that by (1) and the
Mean Value Theorem,

(F +H)Y jW=w

³
(F +H)¡1Y jW=w (t)

´
¡ (F +H)Y jW=w

³
F¡1Y jW=w (t)

´
=

@(F+H)Y jW=w

@y
(r2)

h
(F +H)¡1Y jW=w(t)¡ F¡1Y jW=w(t)

i
where r2 is between (F +H)¡1Y jW=w(t) and F

¡1
Y jW=w(t) and where t = FY j eW=ew(ee): Hence, since (F +

H)Y jW=w

³
(F +H)¡1Y jW=w (t)

´
= t = FY jW=w

³
F¡1Y jW=w (t)

´
; it follows by (3) that

(F +H)¡1Y jW=w(t)¡ F¡1Y jW=w(t) =
FY jW=w

³
F¡1
Y jW=w

(t)

´
¡(F+H)Y jW=w

³
F¡1
Y jW=w

(t)

´
(f+h)Y jW=w(r2)

:

It then follows by (2) that for some a3 <1;

(7)
¯̄̄
(F +H)¡1Y jW=w(t = FY j eW=ew(ee))¡ F¡1Y jW=w(t = FY j eW=ew(ee))¯̄̄ · a3 kHk :

Hence, (4) follows by (5)-(7).
Next, we will obtain a …rst order Taylor expansion for ©(F +H); using the fact that ´(F +H)¡

´(F ) = º(F +H)¡ º(F ): Let R t denote R t¡1 : By the de…nition of ´,
´(F +H)¡ ´(F ) = (F +H)Y jW=w(©(F +H))¡ FY jW=w(©(F ))
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=
R ©(F+H)

f(s;w) ds+
R ©(F+H)

h(s;w) ds

f(w)+h(w)
¡
R ©(F )

f(s;w) ds

f(w)
:

By the Mean Value Theorem, there exist rf and rh between ©(F ) and ©(F +H) such thatR ©(F+H) f(s; w) ds¡ R ©(F ) f(s; w) ds = f(rf ; w) (©(F +H)¡©(F )) andR ©(F+H) h(s;w) ds¡ R©(F ) h(s; w) ds = h(rh; w) (©(F +H)¡ ©(F )):
Let ¢© = ©(F +H)¡©(F ): Then,

´(F +H)¡ ´(F ) = f(w)f(rf ;w)¢©+f(w)h(rf ;w)¢©+f(w)
R ©(F )

h(s;w)ds¡h(w)
R ©(F )

f(s;w)ds

f(w)(f((w)+h(w))
¢

where, by (1), f(w) + h(w) > 0: By the de…nition of º,

º(F +H)¡ º(F ) = (F +H)Y jX=ew(ee)¡ FY jX=ew(ee)
=

Ree
f(s;ew) ds+Ree h(s;ew) ds

f(ew)+h(ew) ¡
Ree

f(s;ew) ds
f(ew)

=
f(ew) Ree h(s;ew) ds¡h(ew) Ree f(s;ew) ds

f(ew)(f(ew)+h(ew))
Let

A ew = f( ew) Ree h(s; ew)ds¡ h( ew) R ee f(s; ew)ds and
Aw = f(w)

R©(F ) h(s; w)ds¡ h(w) R©(F ) f(s;w)ds:
Then,

(8) ´(F +H)¡ ´(F ) =
h
f(rf ;w)+h(rf ;w)

f(w)+h(w)

i
¢©+ Aw

f(w)(f((w)+h(w))
; and

(9) º(F +H)¡ º(F ) = Aew
f(ew)(f(ew)+h(ew)) :

Since ´(F +H)¡ ´(F ) = º(F +H)¡ º(F ); it follows from (8) and (9) that

¢© = (f(w)+h(w))Aew
f(ew)(f(ew)+h(ew))(f(rf ;w)+h(rf ;w)) ¡ Aw

f(w)(f(rf ;w)+h(rf ;w))
:

By the Mean Value Theorem, there exist r0f , between ©(F ) and rf ; such that

f(rf ; w)¡ f(©(F ); w) = @f(r0
f
;w)

@y
(rf ¡©(F )) : Hence,

¢© = (f(w)+h(w))Aew
f(ew)(f(ew)+h(ew))µf(©(F );w)+@f(r0

f
;w)

@y (rf¡©(F ))+h(rf ;w)
¶ ¡ Aw

f(w)

µ
f(©(F );w)+

@f(r0
f
;w)

@y (rf¡©(F ))+h(rf ;w)
¶ :

Let
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D©(F;H) = f(w)

f(ew)2f(©(F );w)A ew + f(w)
f(w)2f(©(F );w)

Aw; and

R©(F;H) =

2664 (f(w)+h(w))

f(ew)(f(ew)+h(ew))µf(©(F );w)+@f(r0
f
;w)

@y (rf¡©(F ))+h(rf ;w)
¶ ¡ f(w)

f(ew)2f(©(F );w)
3775A ew

¡

2664 1

f(w)

µ
f(©(F );w)+

@f(r0
f
;w)

@y (rf¡©(F ))+h(rf ;w)
¶ ¡ 1

f(w)f(©(F );w)

3775Aw:
Then,

(10) ©(F +H)¡ ©(F ) = D©(F;H) +R©(F;H):

By the de…nition of R©(F;H);

R©(F;H) =

24f(ew)2f(©(F );w)h(w)¡f(w)f(ew)2 @f(r0f ;w)@y
(rf¡©(F ))¡f(w)f(ew)2h(rh;w)

f(ew)2(f(ew)+h(ew))f(©(F );w)(f(rf ;w)+h(rf ;w))
35A ew

¡
24f(w)f(ew)h(ew)f(©(F );w)+f(w)f(ew)h(ew) @f(r0f ;w)@y

(rf¡©(F ))+f(w)f(ew)h(ew)h(rh;w)
f(ew)2(f(ew)+h(ew))f(©(F );w)(f(rf ;w)+h(rf ;w))

35A ew
+

24 @f(r0
f
;w)

@y (rf¡©(F ))+h(rf ;w)
f(w)f(©(F );w)(f(rf ;w)+h(rf ;w))

35Aw:
Since, by the de…nition of rf and by (8),

jrf ¡ ©(F )j · j©(F +H)¡ ©(F )j · c1 kHk ;

it follows by (1) that, for some a4 <1;

(11) jR©(F;H)j · a4 kHk2 :

Moreover, by the de…nition of D©(F;H); there exists a5 <1 such that

(12) jD©(F;Hj · a6 kHk :

Let H = bF ¡ F: Then,
(13) bn(w; e)¡ n(w; e) = ©( bF )¡ ©(F )

= D©(F; bF ¡ F ) +R©(F; bF ¡ F );
(14)

¯̄̄
D©(F; bF ¡ F )¯̄̄ · a6 °°° bF ¡ F°°° and

¯̄̄
R©(F; bF ¡ F )¯̄̄ · a5 °°° bF ¡ F°°°2 :

By Assumptions C.1-C.4 and Lemma B.3 in Newey (1994),
°°° bF ¡ F°°°! 0 in probability. Hence, by

(13) and (14), it follows that bn(w; e) ! n(w; e) in probability. Hence, the estimator of n(w; e) is
consistent
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Next, to derive the asymptotic distribution of bn(w; e); we note that by(10)-(12), © is Hadamard
di¤erentiable at F: It then follows by Theorem 3.9.4 in van der Vaart and Wellner (1996) thatq

N¾2eLN µ
©(
beF Y )¡ ©( eFY )¶¡D©µ eFY ;qN¾2eLN ( beF Y ¡ eFY )¶

converges in outer probability to 0. Since

D©( eFY ; ( beF Y ¡ eFY )) = 1
fY jW=w(m(w;e))

R h1(s·ee)¡FY jeW=ew(ee)i
f(ew) ³ bf(s; ew)¡ bf(s; ew)´ ds

¡ 1
fY jW=w(m(w;e))

R [1(s·m(w;e))¡FY jW=w(m(w;e))]
f(w)

³ bf(s;w)¡ bf(s; w)´ ds;
it follows by the de…nition of n(w; e) and the Lemma in Appendix B that, if w 6= ew;
D©( eFY ;qN¾2eLN ( beF Y ¡ eFY ))! N(0; Vn)

where Vn = fR K(z)2g · 1
fY jW=w(m(w;e))

¸2 eL and

eL = 1[d1 = d] R
"
1(s<ee)
f(ew) ¡ F

Y jeW=ew(ee)
f(ew)

#2
f(s; ew) ds

+1[d2 = d]
R h1(s<m(w;e))

f(w)
¡ FY jW=w(m(w;e))

f(w)

i2
f(s; w) ds

= 1[d1=d]

f(ew) FY j eW=ew(ee)(1¡ FY j eW=ew(ee)) + 1[d2=d]
f(w)

FY jW=w(m(w; e))(1¡ FY jW=w(m(w; e)))

=
h
1[d1=d]

f(ew) + 1[d2=d]
f(w)

i
F
Y j eW=ew(ee)(1¡ FY j eW=ew(ee))

where the last equality follows by the de…nition of n(w; e): Hence,

p
N ¾

eL=2
N (m̂(w; e)¡m(w; e)) = pN ¾

eL=2
N

³
©(F̂ )¡©(F )

´
! N(0; Vn)

where Vn = fR K(z)2g
24FY jeW=ew(ee) ³1¡FY jeW=ew(ee)´

fY jW=w(n(w;e))2

35 h1[d1=d]
f(ew) + 1[d2=d]

f(w)

i

Proof of Theorem 3: Consider …rst the case where Assumptions (A.i)-(A.vi) are satis…ed. Without
loss of generality, we will show the identi…cation of the distribution of "1; conditional on X0 = w0:
Given ´ 2 R; let y = r1(´): Note that when X = (w0; w1; ew2; :::; ewK) = (w0; wk); Y = m(X; ") =
r1("1). Hence,

Pr
³
Y · yjX = (w0; w

k)
´
= Pr

³
r1("1) · r1(´)jX = (w0; w

k)
´
= Pr ("1 · ´jX0 = w0)

where the last equality follows by Assumption (A.vi). Hence, the marginal distribution of "1; condi-
tional on X0; is identi…ed from the conditional distribution of Y , when X = (w0; wk): Using similar
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arguments, we can conclude that the marginal distribution of each "k; conditional on W0; is identi-
…ed from the conditional distribution of Y when X = (w0; w1; w2; :::; wK) is such that wk = wk and
wj = ewj for j 6= k: By Assumption (A.v), the distribution of " conditional onX0 is the multiplication
of the marginal distributions, conditional on X0: Hence, F"jX0 is identi…ed..
Next, we show that the functions nk are identi…ed. Without loss of generality, we show this for

k = 1: Note that when X = (w0; w1; ew2; :::; ewK) = (w0; w
k); Y = m(X; ") = r1 (n1(w01 ; w1; "1)) :

Hence, using the conditional independence between " and X1; and the strict monotonicity of n1 in
"1 it follows that

Pr("1 · ´jX0 = w0)

= Pr("1 · ´jX = (w0; w
k))

= Pr(n1(w01; w1; "1) · n1(w01; w1; ´)jX = (w0; w
k))

= Pr
³
r1 (n1(w01 ; w1; "1)) · r1 (n1(w01; w1; ´)) jX = (w0; w

k)
´

= Pr
³
Y · r1 (n1(w01 ; w1; ´)) jX = (w0; w

k)
´

Since, as we have shown above,

Pr ("1 · ´jW0 = w0) = Pr
³
Y · r1 (´) jX = (w0; w

k)
´

it follows that

FY jX=(w0;wk) (r1 (´)) = FY jX=(w0;wk) (r1 (n1(w01 ; w1; ´)))

Partition w0 as w0 = (w01; w0¡1): Note that

FY jX=(w0;wk) (r1 (n1(w01 ; w1; ´)))

=
R r1(n1(w01 ;w1;´)) f(s;w0;w1;ew2;:::;ewK)

f(w0;w1;ew2;:::;ewK) ds
=
R r1(n1(w01 ;w1;´)) f(s;w0;w1;ew2;:::;ewK)

f(w0;w1;ew2;:::;ewK)
·R f(w01 ;w0¡1 ;w1;ew2;:::;ewK)

f(w01 ;w1;ew2;:::;ewK) dw0¡1

¸
ds

=
R r1(n1(w01 ;w1;´)) R f(s;w01 ;w0¡1 ;w1;ew2;:::;ewK)

f(w01 ;w1;ew2;:::;ewK) dw0¡1ds

=
R r1(n1(w01 ;w1;´)) f(s;w01 ;w1;ew2;:::;ewK)

f(w01 ;w1;ew2;:::;ewK) ds
= FY jX=(w01 ;wk) (r1 (n1(w01 ; w1; ´)))

Hence, since

FY jX=(w0;wk)(r1(´)) = FY jX=(w01 ;wk) (r1 (n1(w01 ; w1; ´)))

it follows that
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n1(w01 ; w1; ´) = F
¡1
Y jX=(w01 ;wk)

³
FY jX=(w0;wk) (r1(´))

´
:

This completes the …rst part of the theorem.
Suppose now that Assumptions (A.i)-(A.iv), (A.v’) and (A.vi’) are satis…ed. Then, the results

in the …rst part of the theorem, together with the added conditions that " is independent of X;
imply that, say, for k = 1 and y = r1(´);

Pr
³
Y · yjX = (w0; w

k)
´
= Pr ("1 · ´) :

Using the fact that

Pr
³
Y · yjX = (w0; w

k)
´

=
R
FY jX=(w0;w1;ew2;:::;ewK)(y) fw0jw=(w1;ew2;:::;ewK)(w0) dw0

=
R hR y f(s;w0;w1;ew2;:::;ewK)

f(w0;w1;ew2;:::;ewK) dsi f(w0;w1;ew2;:::;ewK)
f(w1;ew2;:::;ewK) dw0

=
R y R f(s;w0;w1;ew2;:::;ewK)

f(w1;ew2;:::;ewK) dw0 ds

=
R y f(s;w1;ew2;:::;ewK)

f(w1;ew2;:::;ewK) ds
=
R y f(s;w1;ew2;:::;ewK)

f(w1;ew2;:::;ewK) ds
= FY jw=(w1;ew2;:::;ewK)(y);

it follows that

F"1(´) = Pr ("1 · ´) = FY jw=(w1;ew2;:::;ewK)(r1(´)):
Since, Pr ("1 · ´) = Pr ("1 · ´jX0 = w0) and, as shown in the …rst part of the proof,

Pr ("1 · ´jX0 = w0) = FY jX=(w01 ;w1;ew2;:::;ewK) (r1 (n1(w01 ; w1; ´))) ;
n1(w01 ; w1; ´) = r

¡1
1

µ
F¡1
Y jX=(w01 ;w1;ew2;:::;ewK) (F"1(´))

¶
= r¡1

³
F¡1Y jX=(w01 ;wk)

³
FY jw=wk (r1(´))

´´
The argument for k 6= 1 is analogous. Hence, for each k; F"k and nk are identi…ed. Since the "k’s
are independent across k; this implies that the joint distribution of ("1; :::; "K) is identi…ed. This
completes the proof.

Proof of Theorem 5: Let ex and ee be as de…ned in Section 4. Let the functional ¤ be de…ned as in
the proof of Theorem 1 forW = X; y = ee and w = ex: Let the functional © be de…ned as in the proof
of Theorem 2. Hence, ¤(G) = GY jX=ex(ee) and ©(G) = G¡1Y jX=x ³GY jX=ex(ee)´ ; where G : R1+L ! R;
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and for all y; x; z, GY jX=x(y) =
R y
¡1 g(s; x)ds=g(x); g(s; z) = @

L+1G(s; z)=@s@z1 ¢ ¢ ¢ @zL and g(x) =R1
¡1 g(s; x)ds: For all such G; de…ne the functional ¥ by

¥(G) = 1
g(©(G);x)

@g(x)
@x

GY jX=ex(ee) ¡ 1
g(©(G);x)

R©(G) @g(s;x)
@x

ds:

Then, ¥(F ) = @m(x;e)
@x

and ¥( bF ) = d@m(x;e)
@x

: De…ne the functionals ¹ ; ¯, and ° by

¹(G) = 1
g(©(G);x)

; ¯(G) = @g(x)
@x
; and °(G) =

R ©(G) @g(s;x)
@x

ds:

Then,

(1) ¥(G) = ¹(G) ¯(G) ¤(G) ¡ ¹(G) °(G):

Let kGk denote the sup norm of @g(s;x)
@x

: Let H be such that H vanishes outside a compact set,
H is di¤erentiable up to the 2L+ 1:Let ½ > 0 be such that if kHk · ½, then for some a; b; d <1

(2) jh(x)j · a kHk ;
¯̄̄R y
¡1 h(s; x)ds

¯̄̄
· a kHk ;

jf(x) + h(x)j ¸ b jf(x)j ; f(s; x) + h(s; x) ¸ b jf(s; x)j ; and

(F +H)¡1Y jX=x(FY jX=ex(ee)) 2 N(m(x; e); »):
The existence of such a ½ is guaranteed by (1) and (3) in Theorem 2. Consider the H’s that satisfy
kHk · ½:
Analogously to the main arguments in the proofs of Theorems 1 and 2, we will derive the

asymptotic behavior of ¥( bF ) by …rst obtaining a …rst order Taylor expansion of ¥(F +H); and then
letting H = bF ¡ F: With this aim, we will …rst obtain …rst order Taylor expansions for ¹ (F +H);
¯(F +H), ¤(F +H); and °(F +H):
First note that, by the proof of Theorem 2,

(3) ©(F +H)¡ ©(F ) = D©(F;H) +R©(F;H);

where

(4) D©(F;H) = 1
fY jX=x(m(x;e))

R R h1(s·ee)¡FY jX=ex(ee)i
f(ex) 1(s;ex)(s; z) h(s; z) ds dz

¡ 1
fY jX=x(m(x;e))

R R [1(s·m(x;e))¡FY jX=x(m(x;e))]
f(x)

1(s;x)(s; z) h(s; z) ds dz;

and for some c1 <1;

(5) jD©(F;H)j · c1 kHk and jR©(F;H)j · c1 kHk2 :

By (1) and (2) in the proof of Theorem 1,

(6) ¤(F +H)¡ ¤(F ) = D¤(F;H) +R¤(F;H); where
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(7) D¤(F;H) =
Ree
¡1 h(s;ex)ds¡h(ex) F

Y jX=ex(ee)
f(ex) ;

and for some c2 <1;

(8) jD¤(F;H)j · c2 kHk and jR¤(F;H)j · c2 kHk2 :

To obtain a …rst order Taylor expansion for ¹(F +H); note that

¹(F +H)¡ ¹(F ) = 1
f(©(F+H);x)+h(©(F+H);x)

¡ 1
f(©(F+H);x)

;

= f(©(F );x)¡f(©(F+H);x)¡h(©(F+H);x)
[f(©(F+H);x)+h(©(F+H);x)]f(©(F+H);x)

:

where ¹(F +H) is well de…ned by (2). Let ¢© = ©(F +H) ¡ ©(F ): By Taylor’s Theorem, there
exist d1; d2 <1; such that

f(©(F +H); x)¡ f(©(F ); x) = @f(©(F ));x)
@y

¢©+Rem1; and

h(©(F +H); x)¡ h(©(F ); x) = @h(©(F ));x)
@y

¢©+Rem2; where

Rem1 · d1 j¢©j2 and Rem2 · d2 j¢©j2 : Then,

f(©(F ); x)¡ f(©(F +H); x)¡ h(©(F +H); x)

= ¡@f(©(F ));x)
@y

¢©¡ Rem1 ¡ h(©(F ); x)¡ @h(©(F ));x)
@y

¢©¡ Rem2

and

1
[f(©(F+H);x)+h(©(F+H);x)]f(©(F+H);x)

= 1
f(©(F );x)2

+

"
1

[f(©(F );x)+@f(©(F ));x)
@y

¢©+Rem1+h(©(F );x)+
@h(©(F ));x)

@y
¢©+Rem2]f(©(F );x)

¡ 1
f(©(F );x)2

#

= 1
f(©(F );x)2

+

"
¡@f(©(F ));x)

@y
¢©¡Rem1¡h(©(F );x)¡@h(©(F ));x)

@y
¢©¡Rem2

[f(©(F );x)+@f(©(F ));x)
@y

¢©+Rem1+h(©(F );x)+
@h(©(F ));x)

@y
¢©+Rem2]f(©(F );x)3

#
Let

(9) D¹(F;H) =
¡@f(©(F ));x)

@y
D©(F;H) ¡ h(©(F );x)
f(©(F );x)2

and

R¹(F;H) =
¡@f(©(F ));x)

@y
R©(F;H)¡Rem1¡@h(©(F ));x)

@y
¢©¡Rem2

f(©(F );x)2

+
[¡@f(©(F ));x)

@y
¢©¡Rem1¡h(©(F );x)¡@h(©(F ));x)

@y
¢©¡Rem2]

2

[f(©(F );x)+@f(©(F ));x)
@y

¢©+Rem1+h(©(F );x)+
@h(©(F ));x)

@y
¢©+Rem2]f(©(F );x)3

:
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Then,

(10) ¹(F +H)¡ ¹(F ) = D¹(F;H) +R¹(F;H);

and for some c3 <1;

(11) jD¹j · c3 kHk and jR¹j · c3 kHk2 :

Next, letting

(12) D¯(F;H) = @h(x)
@x
;

it follows that

(13) ¯(F +H)¡ ¯(F ) = D¯(F;H)

and for some c4 <1;

(14) jD¯(F;H)j = c4 kHk :

To obtain a …rst order Taylor expansion for °(F +H), we note that

°(F +H)¡ °(F ) = R ©(F+H) @f(s;x)
@x

ds+
R ©(F+H) @h(s;x)

@x
ds¡ R©(F ) @f(s;x)

@x
ds

By Taylor’s Theorem, there exists d3 and d4 such thatR ©(F+H)
©(F )

@f(s;x)
@x

ds = @f(©(F );x)
@x

D© + Rem3; andR ©(F+H)
©(F )

@h(s;x)
@x

ds = @h(©(F );x)
@x

D© + Rem4;

where for i = 3; 4; jRemij · di jD©j2 : Hence, since

©(F +H)¡ ©(F ) = D©(F;H) +R©(F;H);

it follows that

(15) °(F +H)¡ °(F ) = D°(F;H) +R°(F;H); where

(16) D°(F ) = @f(©(F );x)
@x

D©(F ) +
R ©(F )
1

@h(s;x)
@x

ds and

R°(F ) = @f(©(F );x)
@x

R©(F ) + @h(©(F );x)
@x

D©(F ) + Rem3 +Rem4:

It then follows by (3) and (5) that there exists c5 <1 such that

(17) jD°(F )j · c5 kHk and jR°(F )j · c5 kHk2 :

44



We are now in a position to obtain a …rst order Taylor expansion for ¥(F + H): Denote
¹(F ); ¯(F ); °(F );¤(F );©(F ); and ¥(F ) by ¹; ¯; °;¤;©; and ¥; respectively, and denote Dw(F;H)
and Rw(F;H) by Dw and Rw, respectively, for w = ¹; ¯; °;¤;©;¥: It is easy to show that

(18) ¥(F +H)¡ ¥(F ) = D¥ +R¥;

where

D¥ = D¹ ¯ ¤+ ¹ D¯ ¤+ ¹ ¯ D¤¡D¹ ° ¡ ¹ D°; and

R¥ = ¹¯ R¤ + ¹D¯(D¤ +R¤) +D¹¯ (D¤ +R¤)

+D¹D¯ ¤(F +H) +R¹¯(F +H) ¤(F +H)¡ ¹R° ¡R¹°

¡(D¹+R¹)(D° +R°):

By (8), (11), (14), and (17), there exists c6 <1 such that

(19) jD¥j · jD¹j j¯ ¤j+ j¹¤j jD¯j+ j¹¯j jD¤j+ jD¹j j°j+ j¹j jD°j

· c6 kHk ;

and

(20) jR¥j · c6 kHk2 :

We will now use this …rst order Taylor expansion of ¥ to show the consistency of d@m(x; e)=@x
and to derive its asymptotic distribution. Let H = bF ¡F: Then, ¥(F+H)¡¥(F ) = ¥( bF )¡¥(F ) =d@m(x; e)=@x¡ @m(x; e)=@x:By (19) and (20),¯̄̄

@bm(x;e)
@x

¡ @m(x;e)
@x

¯̄̄
· c6

°°° bF ¡ F°°°+ c6 °°° bF ¡ F°°°2
and by Assumptions C.1-C.3 and C.4’,

°°° bF ¡ F°°° ! 0 in probability. Hence, d@m(x; e)=@x !
@m(x; e)=@x in probability. By (18)-(20), ¥ is Hadamard di¤erentiable at F: It then follows by
Theorem 3.9.4 in van der Vaart and Wellner (1996) and the Lemma in Appendix B that

p
N¾

L=2+1
N

³
¥( bF )¡ ¥(F )´¡D¥ ³F;pN¾(L=2)+1N

³ bF ¡ F´´
converges in outer probability to 0. Let

D1¥ =
1

f(©(F );x)
FY jX=ex(ee)@h(x)@x

¡ 1
f(©(F );x)

R ©(F ) @h(s;x) ds
@x

and

D2¥ = D¥¡D1¥:
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Since

D1¥ =
FY jX=x(m(x;e))
f(m(x;e);x)

µ
@bf(x)
@x

¡ @f(x)
@x

¶
¡ 1

f(m(x;e);x)

Rm(x;e) µ@bf(s;x)
@x

¡ @f(s;x)
@x

¶
ds;

it follows, by the Lemma in Appendix B, that

p
N¾

(L=2)+1
N D1¥! N(0; V@x)

where

V@x =
FY jX=x(m(x;e)) (1¡FY jX=x(m(x;e)))

fY jX=x(m(x;e))2f(x)

·R ³R @K(s;z)
@z

ds
´ ³R @K(s;z)

@z
ds
´0
dz
¸
:

Using the same Lemma and the de…nition of D2¥; it is easy to show that

D2¥
³
F;
p
N¾

(L=2)+1
N

³ bF ¡ F´´! 0 in probability.

Hence,

D¥
³
F;
p
N¾

(L=2)+1
N

³ bF ¡ F´´
= D¥1

³
F;
p
N¾

(L=2)+1
N

³ bF ¡ F´´+D¥2 ³F;pN¾(L=2)+1N

³ bF ¡ F´´
! N(0; V@x):

It then follows that

p
N¾

(L=2)+1
N

µ d@m(x;e)
@x

¡ @m(x;e)
@x

¶
=
p
N¾

L=2+1
N

³
¥( bF )¡ ¥(F )´! N(0; V@x)

in distribution, where

V@x =
FY jX=x(m(x;e)) (1¡FY jX=x(m(x;e)))

fY jX=x(m(x;e))2f(x)

·R ³R @K(s;z)
@z

ds
´ ³R @K(s;z)

@z
ds
´0
dz
¸

The result of the Theorem then follows by noticing that

FY jX=x(m(x; e)) = FY jX=ex(ee) = F"(e):

Proof of Theorem 6: As in the proof of Theorem 5, we let ¤; ©; and ¹ denote the functionals
de…ned by ¤(G) = GY jX=ex(ee); ©(G) = G¡1Y jX=x ³GY jX=ex(ee)´ ; and ¹(G) = 1=f(©(G); x); where G :
R1+L ! R; and for all y; x; z, GY jX=x(y) =

R y
¡1 g(s; x)ds=g(x); g(s; z) = @

L+1G(s; z)=@s@z1 ¢ ¢ ¢ @zL
and g(x) =

R1
¡1 g(s; x)ds: For all such G; we de…ne the functionals

ē(G) = ³
@f(ex)
@x

´0 ³
x
"

´
; e°(G) = R ee ³@f(s;ex)

@x

´0 ³
x
"

´
ds;
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º(G) = 1
f(ex) ; ´1(G) = f(x); and ´2(G) = f(ee; ex):

De…ne also the functionals

ª1(G) = ¹(G) ´1(G) ´2(G) º(G)
³
®
"

´
+ ¹(G) ´1(G) º(G) e°(G)

¡¹(G) ´1(G) º(G) ¤(G) ē(G):
and

ª2(G) = ¹(G) ´1(G) ´2(G) º(G)

Then, when m satis…es speci…cation (5.II),
d@m(x;e)
@"

= ª1( bF ) and @m(x;e)
@"

= ª1(F ), while when

m satis…es speci…cation (5.I),
d@m(x;e)
@"

= ª2( bF ) and @m(x;e)
@"

= ª2(F ): To derive the asymptotic
properties of ª1( bF ) and ª2( bF ); we …rst obtain …rst order Taylor expansions for ª1(F + H) and
ª2(F +H):
Let kGk denote the sup norm of @g(s; x)=@x: Let H be such that H vanishes outside a compact

set, H is di¤erentiable up to the order 2L + 1, and kHk is su¢ciently small so that, for some
a; b; d <1

(1) jh(x)j · a kHk ;
¯̄̄R y
¡1 h(s; x)ds

¯̄̄
· a kHk ;

jf(x) + h(x)j ¸ b jf(x)j ; f(s; x) + h(s; x) ¸ b jf(s; x)j ; and

(F +H)¡1Y jX=x(FY jX=ex(ee)) 2 N(m(x; e); »):
Equations (3)-(11) in the proof of Theorem 5 provide …rst order Taylor expansions for the

functionals ©; ¹; and ¤: Using similar arguments as in the proof of that theorem, it is easy to
establish that

(2) ē(F +H)¡ ē(F ) = D ē(F;H);
where

(3) D ē(F;H) = ³
@h(ex)
@x

´0 ³
x
"

´
;

and for some k1 <1;

(4)
¯̄̄
D ē(F;H)¯̄̄ = k1 kHk ;

(5) e°(F +H)¡ e°(F ) = De°(F;H);
where

(6) De°(F;H) = R ee ³@h(ex)
@x

´0 ³
x
"

´
ds;
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and for some k2 <1;

(7) jDe°(F;H)j = k2 kHk ;
(8) º(F +H)¡ º(F ) = Dº(F;H) +Rº(F;H);

where

(9) Dº(F;H) = ¡h(ex)
f(ex)2 ; Rº(F;H) = ¡h(ex)2

f(ex)2(f(ex)+h(ex)) ;
and for some k3 <1;

(10) jDv(F;H)j = k3 kHk ; and jRv(F;H)j = k3 kHk ;

and

(11) ´i(F +H)¡ ´i(F ) = D´i(F;H) i = 1; 2

where

(12) D´1 = h(x); D´2 = h(ee; ex);
and for some k4 <1;

(13) jD´i(F;H)j · k4 kHk i = 1; 2:

Denote ¹(F ); ē(F ); e°(F );¤(F );©(F ); º(F ); ´1(F ); and ´2(F ) by ¹; ē; e°;¤;©; º; ´1; and ´2; re-
spectively, and denote Dw(F;H) by Dw, for w = ¹; ē; e°;¤;©; º; ´1; ´2: De…ne
Dª1(F;H) =

D¹ ´1 ´2 º
³
®
"

´
+ ¹D´1 ´2 º

³
®
"

´
+ ¹ ´1D´2 º

³
®
"

´
+ ¹ ´1 ´2Dº

³
®
"

´
+D¹´1 º e° + ¹D´1 º e° + ¹ ´1Dº e° + ¹ ´1 º De°
¡D¹´1 º ¤ ē ¡ ¹D´1 º ¤ ē ¡ ¹ ´1Dº ¤ ē
¡¹ ´1 º D¤ ē ¡ ¹ ´1 º ¤D ē:
(14) Rª1(F;H) = ª1(F +H)¡ª1(F )¡Dª1(F;H);

Dª2(F;H) = D¹ ´1 ´2 º + ¹D´1 ´2 º + ¹ ´1D ´2 º + ¹ ´1 ´2Dº ;

and
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(15) Rª2(F;H) = ª2(F +H)¡ª2(F )¡Dª2(F;H):

Using equations (2)-(13) above and equations (3)-(11) in the proof of Theorem 5, it is easy to show
that there exists k5; k6 <1 such that

(16) jDª1(F;H)j · k5 kHk ; jRª1(F;H)j · k5 kHk2 ; and

(17) jDª2(F;H)j · k6 kHk ; and jRª2(F;H)j · k6 kHk2.

We will …rst use the …rst order Taylor expansion, (14) and (16), to derive the asymptotic
properties of d@m(x; e)=@" when m satis…es speci…cation (II): Let H = bF ¡ F: Then, ª1(F +H) ¡
ª1(F ) =

d@m(x; e)=@" ¡ @m(x; e)=@":By (14), (16) and Assumptions (C.1)-(C.3) and (C.4’), it then
follows, by the arguments analogous to the ones used in the proofs of the previous theorems, thatd@m(x; e)=@"! @m(x; e)=@" in probability. Also by (14) and (16), ª1 is Hadamard di¤erentiable at
F: Let

D1ª1(F; F +H) = ¹ ´1 º De° ¡ ¹ ´1 º ¤D ē and D2ª1 = Dª1 ¡D1ª1:

Since, when H = bF ¡ F;
D1ª1(F; bF ¡ F ) =

Ree ³@h(ex)
@x

´0
(x" )ds

fY jX=x(m(x;e)) f(ex) ¡ F
Y jX=ex(ee)³@h(ex)@x

´0
(x" )

fY jX=x(m(x;e)) f(ex)
=

Ree ³@bf(ex)
@x

¡@f(ex)
@x

´0
(x" )ds

fY jX=x(m(x;e)) f(ex) ¡
F
Y jX=ex(ee)³@bf(ex)@x

¡@f(ex)
@x

´0
(x" )

fY jX=x(m(x;e)) f(ex)
it follows, by applying the Lemma in Appendix B, that

D1ª1(F;
p
N¾

L=2+1
N ( bF ¡ F ))! N(0; VII;@")

in distribution, where

VII;@" =
F
Y jX=ex(ee) (1¡FY jX=ex(ee)))
fY jX=x(m(x;e))2f(ex)

½³
x
"

´0 ·R ³R @K(s;z)
@z

ds
´ ³R @K(s;z)

@z
ds
´0
dz
¸ ³

x
"

´¾
:

while

D2ª1(F;
p
N¾

L=2+1
N ( bF ¡ F ))! 0 in probability

Since, by Theorem 3.9.4 in van der Vaar and Wellner (1996),

p
N¾L=2+1N

³
ª1( bF )¡ª1(F )´¡pN¾L=2+1N

³
D1ª1(F; bF ¡ F )´

converges in outer probability to 0; the above implies that

p
N¾(L=2)+1N

µ d@m(x;e)
@"

¡ @m(x;e)
@"

¶
=
p
N¾L=2+1N

³
ª1( bF )¡ª1(F )´! N(0; VII;@")

in distribution, where
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VII;@" =
F
Y jX=ex(ee) (1¡FY jX=ex(ee)))
fY jX=x(m(x;e))2f(ex)

½³
x
"

´0 ·R ³R @K(s;z)
@z

ds
´ ³R @K(s;z)

@z
ds
´0
dz
¸ ³

x
"

´¾
:

The statement in the Theorem follows by noticing that FY jX=ex(ee) = F"(e):
We next use the …rst order Taylor expansion, (15) and (17), to derive the asymptotic properties

of d@m(x; e)=@" when m satis…es speci…cation (5.I). Let H = bF ¡ F: Then, ª2(F +H) ¡ ª2(F ) =d@m(x; e)=@" ¡ @m(x; e)=@":By (15), (17) and Assumptions (C.1)-(C.3) and (C.4’), it follows, as
previously, that d@m(x; e)=@"! @m(x; e)=@" in probability. Also by (15) and (17), ª2 is Hadamard
di¤erentiable at F: Let

D1ª2 = ¡ h(m(x;e);x)
f(m(x;e);x)2

f(ee;ex) f(x)
f(ex) + h(ee;ex) f(x)

f(m(x;e);x) f(ex) :
By following arguments similar to the ones used earlier, and using the Lemma in Appendix B, we
can show that the asymptotic distribution of @cm(x; e)=@" ¡ @m(x; e)=@" will be driven by D1ª2,
because in the terms in D1ª2; all the L+1 coordinates in the argument of the function h are …xed,
while in the other terms of Dª2; only L coordinates are …xed. Since

D1ª2(F; bF ¡ F ) = ¡(bf(m(x;e);x)¡f(m(x;e);x))f(m(x;e);x)2
f(ee;ex) f(x)

f(ex) +
(bf(ee;ex)¡f(ee;ex)) f(x)
f(m(x;e);x) f(ex)

the results of the Lemma in Appendix B imply that

D1ª2
³
F;
p
N¾(L+1)=2N

³ bF ¡ F´´! N(0; VI;@")

where, since e 6= m(x; e);

VI;@" = (
R
K(s; z)2dsdz)

(
f(ee;ex)

fY jX=x(m(x;e))2 f(ex)2 + f
Y jX=ex(ee)2f(m(x;e);x)
fY jX=x(m(x;e))4f(x)2

)

= (
R
K(s; z)2dsdz)

(
f
Y jX=ex(ee)

fY jX=x(m(x;e))2 f(ex) + f
Y jX=ex(ee)2

fY jX=x(m(x;e))3f(x)

)
:

By the Delta method, it then follows that

p
N¾

(L+1)=2
N

µ d@m(x;e)
@e

¡ @m(x;e)
@e

¶
=
p
N¾

(L+1)=2
N

³
ª2( bF )¡ª2(F )´

! N(0; VI;@")

Finally, we note that the asymptotic properties of d@m(x; e)=@" when m satisfy speci…cation
(5.III) follow from Theorem 5.
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Appendix B

The following Lemma presents well known results about kernel estimators (see, for example,
Newey (1994)). They are presented here for completeness.

LEMMA: Suppose that the following assumptions are satis…ed:

(i) fyi; xig is iid, yi has values in RL and xi has values in RQ.

(ii) The joint density f(y; x) has a compact support £ ½ RL+Q; f is continuously di¤erentiable
up to the order g = t+ s for some even s > 0:

(iii) The kernel function K(¢; ¢) is continuously di¤erentiable, K vanishes outside a compact set,R
K(y; x)dydx = 1; and K is a kernel of order s:

(iv) The function r(y; x) is continuous and bounded a.e.

Then,

(I) if t = 0; N¾QN !1 and ¾sN
q
N¾QN ! 0; thenq

N¾QN
R
r(y; x) ( bf(y; x)¡ f(y; x)) dy ! N(0; V1)

where V1 =
nR
[r(y; x)]2 f(y; x)dy

onR
(
R
K(y; x)dy)2 dx

o
;

and for any two distinct points x(1) and x(2);q
N¾QN

R
r(y; x(1)) ( bf(y; x(1))¡ f(y; x(1))) dy andq

N¾QN
R
r(y; x(1)) ( bf(y; x(1))¡ f(y; x(1))) dy are asymptotically independent.

(II) if t = 1; N¾Q+2N !1 and ¾sN
q
N¾Q+2N ! 0 thenq

N¾Q+2N

R
r(y; x)

µ
@bf(y;x)
@x

¡ @f(y;x)
@x

¶
dy ! N(0; V2)

where V2 =
nR
[r(y; x)]2 f(y; x)dy

ogK2

andgK2 =
½R ³R R @K(y;x)

@x
dy
´ ³R R @K(y;x)

@x
dy
´0
dx
¾
:

Moreover, for any two distinct points x(1) and x(2);q
N¾Q+2N

R
r(y; x(1))

µ
@bf(y;x(1))

@x
¡ @f(y;x(1))

@x

¶
dy and
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q
N¾Q+2N

R
r(y; x(2))

µ
@bf(y;x(2))

@x
¡ @f(y;x(2))

@x

¶
dy are asymptotically independent.

PROOF: We …rst show (I). By the de…nition of bf;
R
r(y; x) ( bf(y; x)¡ f(y; x)) dy
=
R
r(y; x)

³
1
N

PN
i=1

h
1

¾L+Q
K(yi¡y

¾
; xi¡x

¾
; )¡ f(y; x)

i´
dy

= 1
N

PN
i=1

hR
r(y; x) 1

¾L+Q
K(yi¡y

¾
; xi¡x

¾
)dy ¡ R

r(y; x)f(y; x)dy
i

Let

wi =
1

¾L+Q

R
r(y; x)K(yi¡y

¾
; xi¡x

¾
)dy:

Then,

R
r(y; x) ( bf(y; x)¡ f(y; x)) dy
= 1

N

PN
i=1 [wi ¡

R
r(y; x) f(y; x) dy ]

= 1
N

PN
i=1 [wi ¡ E(wi)] + [E(wi)¡

R
r(y; x) f(y; x) dy]

We will show that under the above assumptions, the …rst term is asymptotically normal and the
second converges to 0. For this, we note that

E(wi) = E
³

1
¾L+Q

R
r(y; x)K(yi¡y

¾
; xi¡x

¾
)dy

´
=
R R ³ 1

¾L+Q

R
r(y; x)K(yi¡y

¾
; xi¡x

¾
)dy

´
f(yi; xi)dyidxi

=
R R
(
R
r(y; x)K(ey; ex)dy) f(y + ¾ey; x+ ¾ex)deydex

=
R
r(y; x) (

R R
K(ey; ex)f(y + ¾ey; x+ ¾ex)deydex) dy

Using a Taylor’s expansion of f(y + ¾ey; x+ ¾ex) around f(y; x) and using the assumption that the
kernel function K integrates to 1 and is of order s; it follows that

(1) E(wi) =
R
r(y; x)f(y; x)dy +O(¾s):

Next,

E(w2i ) = E
µ

1
¾2L+2Q

hR
r(y; x)K(yi¡y

¾
; xi¡x

¾
)dy

i2¶
= E

µ
1
¾2Q

hR
r(yi ¡ ¾ey; x)K(ey; xi¡x¾ )deyi2¶

52



=
R R 1

¾Q
[
R
r(yi ¡ ¾ey; x)K(ey; ex)dey]2 f(yi; x+ ¾ex)dyidex

Then, by the continuity and boundedness of f and r; it follows by the Bounded Convergence
Theorem that

(2) ¾QE(w2i )! [
R
r(y; x)2f(y; x)dy]

nR
(
R
K(y; x)dy))2 dx

o
:

From (1), (2), and ¾ ! 0 it follows that

¾QV ar(wi)! [
R
r(y; x)2f(y; x)dy]

nR
(
R
K(y; x)dy))2 dx

o
Let ± > 0:Since

E
¯̄̄
1
N
(wi ¡E(wi)

¯̄̄2+± · 22+±Ejwij2+±
N2+±

E jwij2+± = E
¯̄̄

1
¾L+Q

R
r(y; x)K(yi¡y

¾
; xi¡x

¾
)dy

¯̄̄2+±
=
R R µ 1

¾Q(2+±)

¯̄̄R
r(yi ¡ ¾ey; x)K(ey; xi¡x¾ )dey ¯̄̄2+±¶ f(yi; xi)dyidxi

=
R R ³ 1

¾Q(1+±)
jR r(yi ¡ ¾ey; xi ¡ ¾ex)K(ey; ex)deyj2+±´ f(yi; x+ ¾ex)deydex

= O
³

1
¾Q(1+±)

´
and

³
V ar(wi)
N

´2+±
2 = O

µ
1

(N¾Q)1+
±
2

¶
;

it follows thatPN

i=1
Ej(wiN ¡E(wiN )j2+±h

(V ar
PN

i=1

wi
N )

1=2
i2+± = PN

i=1
Ej(wiN ¡E(wiN )j2+±
(V ar(wiN ))

1+ ±2
= O

³
1

N1+(±=2)¾Q±=2

´
! 0:

By Liapounov’s Theorem it then follows thatq
N¾QN(

1
N

PN
i=1wi ¡ E(wi))! N(0; V1)

where

V1 = [
R
r(y; x)2f(y; x)dy]

nR
(
R
K(y; x)dy))2 dx

o
:

Since by (1) and by assumption,q
N¾QN (E(wi)¡

R
r(y; x)f(y; x)dy) = O

µ
¾sN

q
N¾QN

¶
! 0

the …rst part of (I) is proved.
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Next, to show the asymptotic independence, we note that by (i) and the de…nition of bf the
covariance equals

¾Q

¾2(L+Q)
fE [(R r1K1) (

R
r2K2)]¡ E (R r1K1)E (

R
r2K2)g

where³R
rkKk

´
=
R
r(y; x(k))K

³
yi¡y
¾
; xi¡x

(k)

¾

´
dy k = 1; 2

Since

E [(
R
r1K1) (

R
r2K2)]

= ¾2L+Q
R ³R er1fK1

´ ³R er1fK1
´
f(yi; x

(1) + ¾ex)dyidex
where

R er1fK1 =
R
r(yi ¡ ¾ey; x(1))K(ey; ex)dey

and
R er2fK2 =

R
r(yi ¡ ¾ey; x(2))K(ey; ex+ x(1)¡x(2)

¾
)dey

it follows by bounded convergence, (1), and ¾ ! 0 that the covariance converges to 0:

We next show (II). By the de…nition of bfx;R R
r(y; x) ( bfx(y; x)¡ fx(y; x)) dy

=
R R
r(y; x)

µ
1
N

PN
i=1

·
(¡1)

¾L+Q+1
@K(

yi¡y
¾
;
xi¡x
¾

)

@x
¡ @f(y;x)

@x

¸¶
dy

= 1
N

PN
i=1

·R R
r(y; x) (¡1)

¾L+Q+1
@K(

yi¡y
¾
;
xi¡x
¾
)

@x
dy ¡ R R

r(y; x) @f(y;x)
@x

dy
¸

Let wi =
(¡1)

¾L+Q+1

R R
r(y; x)

@K(
yi¡y
¾
;
xi¡x
¾

)

@x
dy: Then,

R
r(y; x) ( bfx(y; x; z)¡ fx(y; x; z)) dy
= 1

N

PN
i=1 [wi ¡ E(wi)] +

h
E(wi)¡ R

r(y; x) @f(y;x)
@x

dy
i

We note that

E(wi) = E
µ

(¡1)
¾L+Q+1

R
r(y; x)

@K(
yi¡y
¾
;
xi¡x
¾
)

@x
dy
¶

=
R R µ (¡1)

¾L+Q+1

R
r(y; x)

@K(
yi¡y
¾
;
xi¡x
¾
)

@x
dy
¶
f(yi; xi)dyidxi

=
R R ³ (¡1)

¾

R
r(y; x)@K(ey;ex)

@x
dy
´
f(y + ¾ey; x+ ¾ex)deydex
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=
R
r(y; x)

³R R
K(ey; ex)@f(y+¾ey;x+¾ex)

@x
deydex´ dy

where the last inequality follows by integration by parts. Using a Taylor’s expansion of @f(y+¾ey;x+¾ex)
@x

around @f(y;x)
@x

and using the assumption that the kernel function K integrates to 1 and is of order
s; it follows that

(3) E(wi) =
R R
r(y; x)@f(y;x)

@x
dy +O(¾s):

Next,

E(wiw
0
i)

= E
µ

1
¾2(L+Q+1)

·R
r(y; x)

@K(
yi¡y
¾
;
xi¡x
¾

)

@x
dy
¸ ·R

r(y; x)
@K(

yi¡y
¾
;
xi¡x
¾

)

@x0 dy
¸¶

= E
³

1
¾2Q+2

rir
0
i

´
=
R R ³ 1

¾Q+2
rir

0
i

´
f(yi; x+ ¾ex)dyidex

where ri =
R
r(yi ¡ ¾ey; x)@K(ey;xi¡x¾ )

@x
dey

and ri =
R
r(yi ¡ ¾ey; x)@K(ey;xi¡x¾ )

@x
dey:

By the continuity and boundedness of f and r; it follows by the Bounded Convergence Theorem
that

(4) ¾Q+2E(wiwi0)! [
R
r(y; x)2f(y; x)dy]fK

where fK =
½R ³R @K(y;x)

@x
dy
´ ³R @K(y;x)

@x
dy
´0
dx
¾
:

From (3), (4), and ¾ ! 0 it then follows that

¾Q+2V ar(wi)! [
R
r(y; x)2f(y; x)dy] fK

To apply Liapounov’s Central Limit Theorem, we note that, for ± > 0;

E
¯̄̄
1
N
(wi ¡E(wi)

¯̄̄2+± · 22+±Ejwij2+±
N2+±

where

E jwij2+± = E
¯̄̄̄
(¡1)

¾L+Q+1

R
r(y; x)

@K(
yi¡y
¾
;
xi¡x
¾

)

@x
dy

¯̄̄̄2+±
=
R R Ã (¡1)2+±

¾(Q+1)(2+±)

¯̄̄̄R
r(yi ¡ ¾ey; x)@K(ey;xi¡x¾ )

@x
dey ¯̄̄̄2+±! f(yi; xi)dyidxi
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=
R R µ (¡1)2+±

¾Q(1+±)+2+±

¯̄̄R
r(yi ¡ ¾ey; x)@K(ey;ex)@x

dey ¯̄̄2+±¶ f(yi; x+ ¾ex)dyiydex
= O

³
1

¾Q(1+±)+2+±

´
and

³
V ar(wi)
N

´2+±
2 = O

µ
1

(N¾Q+2)1+
±
2

¶
:

Hence,PN

i=1
Ej(wiN ¡E(wiN )j2+±h

(V ar
PN

i=1

wi
N )

1=2
i2+± = PN

i=1
Ej(wiN ¡E(wiN )j2+±
(V ar(wiN ))

1+ ±2
= O

³
1

N1+±=2¾Q±=2

´
! 0:

By Liapounov’s Theorem it then follows thatq
N¾Q+2N

³
1
N

PN
i=1 [wi ¡ E(wi)]

´
! N(0; V2)

where V2 = [
R
r(y; x)2f(y; x)dy] fK

and fK =
½R ³R @K(y;x)

@x
dy
´ ³R @K(y;x)

@x
dy
´0
dx
¾
:

Since, by (3),
q
N¾Q+2N

³
E(wi)¡ R R

r(y; x)@f(y;x)
@x

) dy
´
= O(¾sN

q
N¾Q+2N ) ! 0: The …rst part of

result (II) is proved. To prove the second part of (II), we note that by (i) and the de…nition of c@f
@x
;

the covariance equals

¾Q+2

¾2(L+Q+1)
fE [(R r1@K1) (

R
r2@K2)]¡ E (R r1@K1)E (

R
r2@K2)g

where

³R
rk@Kk

´
=
R
r(y; x(k))

@K

³
yi¡y
¾
;
xi¡x(k)

¾

´
@x

dy k = 1; 2

Since

E [(
R
r1@K1) (

R
r2@K2)]

= ¾2L+Q+2
R ³R er1@fK1

´ ³R er1@fK1
´
f(yi; x

(1) + ¾ex)dyidex
where

R er1fK1 =
R
r(yi ¡ ¾ey; x(1))@K(ey;ex)@x

dey
and

R er2fK2 =
R
r(yi ¡ ¾ey; x(2))@K(ey;ex+x(1)¡x(2)

¾
)

@x
dey

it follows by bounded convergence, (3), and ¾ ! 0 that the covariance converges to 0:
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