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Abstract

We present estimators for nonparametric functions that depend on unobservable random vari-
ables in nonadditive ways. The distributions of the unobservable random terms are assumed to be
unknown. We show how properties that may be implied by economic theory, such as monotonicity,
homogeneity of degree one, and separability can be used to identify the unknown, nonparametric
functions and distributions. We also present convenient normalizations, to use when the properties
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Keywords: nonparametric estimation, nonadditive random term, nonseparable models, shape
restrictions, conditional distributions, kernel estimators

*The research presented in this paper was partially supported by NSF. I am grateful to three referees
and to Richard Blundell for their insightful comments and suggestions, which help generate a substantially
improved paper. I have greatly benefitted from my interaction with Joseph Altonji, James Heckman, and
Whitney Newey, from the research assistance of Ulrich Doraszelski and Elie Tamer, and from the comments
of Charles Manski, José Sheinkman, Christopher Taber, and seminar participants at New York University,
Northwestern University, Universidad de San Andrés, Universidad Di Tella, University of Wisconsin, the
1999 Summer Meeting of the Econometric Society, the 1999 Latin American Meeting of the Econometric
Society, the Conference in Honor of Rolf Mantel, and the 2000 Midwest Econometrics Group Conference.



1. Introduction

A common practice when estimating many economic models proceeds by first specifying the re-
lationship between a vector of observable exogenous variables, X, and a dependent variable, Y,
and then, adding a random unobservable term, ¢, to the relationship. In the resulting model, ¢
is typically interpreted as the difference between the observed value of the dependent variable, Y,
and the conditional expectation of Y given X. This procedure has been criticized on the grounds
that instead of adding an unobservable random term to the relationship, as an after-thought, one
should be able to generate an unobservable random term from within the model. When approaching
the random relationship in the latter way, ¢ may represent an heterogeneity parameter in a utility
function, some productivity shock in a production function, or some other relevant unobservable
variable (see, for example, Heckman (1974), Heckman and Willis (1974), and Lancaster (1979)).
When using this approach, the random term e rarely appears in the model as a term added to
the conditional expectation of Y given X (McElroy (1981, 1987), Brown and Walker (1989, 1995),
Lewbel (1996).) In general, unless one specifies very restrictive parametric structures for the func-
tions in the economic model, the function by which the values of Y are determined from X and ¢
is nonlinear in .

Most nonparametric methods that are currently used to specify the relationship between a vector
of observable exogenous variables, X, an unobservable term, and an observable dependent variable,
Y, define the unobservable random term as being the difference between Y and the conditional
expectation. The resulting model is then one where the unobservable random term is added to
the relationship. Although one could interpret this added unobservable random term as being a
function of the observable and some other unobservable variables, the existent methods do not
provide a way of studying this function, which has information about the important interactions
between the observable and unobservable variables.

In this paper, we present a nonparametric method for estimating a nonparametric, not necessar-
ily additive function of a vector of exogenous variables, X, and an unobservable vector of variables,
€. The value of a dependent variable, Y, is assumed to be determined by this nonparametric func-
tion. The distribution of ¢ is not parametrically specified and it is also estimated.

We first consider the model Y = m(X ), where ¢ is a random variable, m is strictly increasing
in €, and both the function m and the distribution of ¢ are unknown. We characterize the set of
functions that are observationally equivalent to m, when ¢ is independent of X, and provide three
different specifications for the function m, which allow one to identify the distribution of £ and the
function m. The first specification is just a convenient normalization. It specifies the value of m(z, ¢)
at a particular value of x. The second specification imposes an homogeneity of degree one condition,
along a given ray, on some coordinates of X and e. This condition, together with the specification
of the value of m at only one point of the ray, is shown to be sufficient to identify the distribution
of ¢ and the function m. This second specification is particularly useful, for example, when the
function m is either a cost or profit function, since economic theory implies that these functions
are homogenous of degree one in some or all of their arguments. The third specification can be
seen as a nonparametric generalization of semiparametric transformation models where neither the
transformation function nor the distribution of the unobservable random term are parametrically
specified. Instead of specifying that Y = A(3'X + ¢), where A is a strictly increasing, unknown
function, and where both, the absolute value of one of the coordinates of 3 and the value of A at
one point are given (see, for example, Horowitz (1996)), we specify that Y = s(X;,e — X3), for some
unknown function s, which is strictly increasing in the last coordinate and whose value is given at



one point. In the latter specification, X = (X3, X5) and X5 € R.

For each of the three specifications, we extend the identification results to the case where ¢ is
independent of only some coordinates of X, conditional on the other coordinates. A special case
of this is, of course, when ¢ is independent of X, conditional on some vector Z, which is not an
argument of m, since we can consider functions m that are constant as Z varies.

For each of the specifications and assumptions on the distribution of €, we show that the estima-
tor for the distribution of € at a particular value, e, is obtained from an estimator for the conditional
distribution function of Y given X, evaluated at particular values of X and Y. The estimator for
the value of the function m at a particular vector, (z,e€), is defined as an estimator for a quantile
of the conditional distribution function of Y given X = z, where the quantile is the value of the
estimator for the distribution of €, at ¢ = e. The estimator for the quantile is based on the quantile
estimator of Nadaraya (1964) (see also Azzalini (1981)).

The estimators for the distribution of e, the function m, and the derivatives of m are shown to
be consistent and asymptotically normal. Each of these estimators is a nonlinear functional of a
kernel estimator for the density function of (Y, X'). We derive their asymptotic distributions using a
Delta method of the type developed in Ait-Sahalia (1994) and Newey (1994). This method proceeds
by first obtaining a first order Taylor expansion of each nonlinear functional around its true value,
and then deriving the asymptotic distribution of the linear part of the expansion.

Some other papers that consider nonparametric models where the random terms do not enter in
an additive form are Roehrig (1988), Brown and Matzkin (1996), Altonji and Ichimura (1997), Al-
tonji and Matzkin (1997), Heckman and Vytlacil (1999, 2001), Vytlacil (2000), Bajari and Benkard
(2001), and Imbens and Newey (2001). Roehrig (1988) provides a general condition for the identifi-
cation of nonparametric systems of equations. Brown and Matzkin (1996) extend Roehrig (1988)’s
conditions and provide an extremum estimator for estimating nonparametric simultaneous equa-
tions of the form studied in Roehrig (1988). Altonji and Ichimura (1997) consider models with
one dependent variable, and estimate an average derivative. Altonji and Matzkin (1997) consider
the estimation of models for panel data. Heckman and Vytlacil (1999, 2001) and Vytlacil (2000)
study models where potential outcomes are nonadditive in unobservable random terms. Bajari
and Benkard consider the identification and estimation of nonadditive price functions in hedonic
models. Imbens and Newey (2001) study the estimation of a triangular, nonseparable simultaneous
equations model.

In nonparametric models where the unobservable random term is additive, shape restrictions
have been used in previous work to identify otherwise unidentified nonparametric functions and
to estimate nonparametric models (see, for example, Matzkin (1992)). Matzkin (1994) provides a
review of some of the existent literature for limited dependent variable models and nonparametric
regression functions.

There is also a large literature in econometrics, which started with Heckman and Singer (1984a),
on models that incorporate an unobservable random term, which is interpreted as an heterogeneity
parameter, and whose distribution is nonparametric.

The outline of the paper is as follows. In the next section, we present the basic model and study
its identification. In Section 3, we present estimators for the function m and the distribution of ¢,
together with their asymptotic properties. The results are extended to functions that depend on
a multidimensional unobservable random term e, in Section 4. Estimators for the derivatives of
m are studied in Section 5. Section 6 presents the results of some simulations. A short summary
is presented in Section 7. Appendix A contains most of the proofs of the main theorems, while
Appendix B presents, in a Lemma, previously obtained results, which are used in the proofs given



in Appendix A.

2. The Model

The building block for the models that we will study can be described by the basic model
(2.1) Y =m(X,e)

where m : A x E — R is continuous in (X, ) and strictly increasing in e, A C R is the support
of X, E C R is the support of £, Y and X are observable, and ¢ is an unobservable random
term which is distributed, with a distribution F, independently (or conditionally independently) of
X. Many widely used type of models fall into this category. Models where € represents unobserved
heterogeneity or a technological shock may satisfy model (1). Models that are expressed in terms
of an unobservable variable that is not independent of X may be rewritten as models with an
unobservable random term that is independent of X. If Y = (X, n), where nis not independent of
X, but n = s(X,e) where ¢ is independent of X, then Y = r(X, s(X,¢)) = m(X,¢).

Some transformation models satisfy (1), such as the one presented in Box and Cox (1964) and
the semiparametric generalized regression model in Han (1987), when the transformation is strictly
increasing. All the transformation models studied in Horowitz (1996), of the type Y = A~1(8'X +¢),
where A is an unknown, strictly increasing function and ¢ is distributed independently of X with
an unknown distribution, satisfy model (1).

Duration models, where Y denotes time in a state and ¢ is the negative of the log-integrated
hazard function, fall into the category of model (1), even when the hazard function is not separable
in any of its arguments. In this case, € is distributed extreme value, independently of X, and
m(X,e) = AY(X,e®), where A(X,Y) is the integrated hazard up to time Y, conditional on X,
and A71(X, ) denotes the inverse of A(X,Y) with respect to Y.

Duration models with unobserved heterogeneity also satisfy model (1), when the conditional haz-
ard function is multiplicative in the unobserved heterogeneity variable. Let 6 denote the unobserved
heterogeneity variable, assumed to be distributed independently of X. Let h(s|X, ) denote the
conditional hazard function, and suppose that it can be written as h(s|X,0) = r(s, X )e~ for some
unknown, nonnegative function r. Let € = u + 6, where u is the negative of the log of the integrated
conditional hazard function. Then, u is distributed extreme value, independently of (X,#), and,
hence, ¢ is independent of X. In this model m(X,e) = A1 X, e~¢), with A(X,Y) = [, (s, X)ds.
The identification of this model, with r possessing no particular structure, was studied in Heckman
(1991). The case where 7(s, X) = r1(s)r2(X) was studied by Elbers and Ridders (1982), Heckman
and Singer (1984), Barros and Honore (1988), and Ridders (1990). (See Barros (1986) for the case
where r(s, X) is a known function of r(s) and ro(X).)

The first question that arises when specifying the model in (1) is whether one can identify the
function m and the distribution of . Following the standard definition of identification, we say that
(m, F,) is identified if we can uniquely recover it from the distribution of the observable variables.
More specifically, let M denote a set to which the function m belongs, and let I' denote a set to
which F; belongs. Let Fy x(-;m/, F.) denote the joint cdf of the observable variables when m = m/’
and F.=F. Then,



Definition: The pair (m, F.) is identified in the set (M x T') if
(i) (m,F.) € (M xT') and (i) for all (m', F!)in (M xT),
[Fyvx(sm, F.) = (Fyx(sm/, F))] = (m', FL) = (m, F,)

If for any two functions, m’ and m” in M, we can find distributions, F! and F.” in I" such that
the pairs (m/, F!) and (m”, F.”) generate the same distribution of observable variables, m’ and m”
are said to be observationally equivalent.

Definition: Any two functions, m’ and m” in M are said to be observationally equivalent if there
exist F!, F. in T such that for all (y,z), Fy.(y,z;m', F!) = F, .(y,x;m , F.).

To analyze the identification of (m, F.) in model (1), we first note that, since m is strictly
increasing in ¢, there exists a function v such that for all z € A, ¢ € E, and y € m(A4, E),
v(z,y) = ¢ if and only if y = m(z,e). Hence, the function v is the inverse of m, conditional on
X. Clearly, (v, Fy) is identified if and only if (m, F.) is identified. Let I" denote a set of continuous,
strictly increasing distribution functions. Let V' denote a set of continuous functions to which v
belongs. The next Lemma shows what properties V' has to satisfy to guarantee the identification
of (v, F.) in V x I'. If the function v were assumed to be differentiable, we could present a different
proof for this lemma, using the results in Roehrig (1988).

Lemma 1: v,v" € V are observationally equivalent if and only if there exists a strictly increasing
function g : R — R such that v" = gowv.

Proof of Lemma 1: Note that, by the definition of v and the independence between € and X,
Pr(Y < ylX = 2) = Pr(m(X,&) < y|X = &) = Pr(e < v(a, y)|X = 2) = Fo(o(x,y)).

Hence7 FY\X:x(Z/) = FE(”("E7 y))

If v and v’ are observationally equivalent, there exist F! and F! in I'such that for all (z,y),
F'(v(z,y)) = F/(v'(z,y)). Since F! is strictly increasing, v'(z,y) = (F!)"'F/(v(x,y)). Let g =
(F/)~'F”.Then, g is strictly increasing and v/ = g o v.

On the other side, suppose that v" = g o v for some strictly increasing function g. Let F! =
F. o g7'. It then follows that

Fy|x=(y;v, Fz) = Fo(v(z,y)) = FL(V'(2,y)) = Fyjx=2(y; V', F))

Hence, v and v’ are observationally equivalent. This completes the proof.

The lemma states that the function v is identified up to a monotone transformation, g. For any
such transformation, (g o v, F. o g7') and (v, F.) generate the same distribution of (Y, X). To see
what this means in terms of the inverse function m, suppose that m* and F* are the true function
and distribution, and let v* denote the inverse function of m*, conditional on x. Then, € = v*(z, y) is
distributed with F* and y = m*(x,¢). Let g be any strictly increasing transformation. Let &’ = g(e)
and v'(z,y) = g(v*(z,y)). The lemma implies that the model ¢’ = g(¢) = g(v*(z,y)) = v'(z,y)
generates the same distribution of the observable variables as the model ¢ = v*(x,y). Let m/



denote the inverse function of v/, conditional on x. Then, for any value e, m/(x,e) denotes the
value of y that satisfies e = v/(z,y). Let then ¢’ and = be given. To find such a value of y, we
note that since ¢’ = v'(z,y) = g(v*(z,v)), v*(x,y) = g *(¢'). Hence, since m* is the inverse of v*,
conditional on x, y = m*(z,g ' (¢’)). This shows that m’(z, ') = m*(x, g~ (¢’)), or, since &’ = g(¢),
m'(z,g(e)) = m*(z,e). Hence, m’ and m* are observationally equivalent if and only if m’ equals m*
with e substituted by g(¢), for some strictly increasing function g, that is

m'(x,g(e)) = m*(z,¢).

The discussion in the above paragraph shows that, for normalization purposes, we are free to
choose the function g. One convenient normalization is given by the function gsuch that, for some
given value T of X,

g((T.y)) =v.
The function m, which is the inverse function of g o v is the function that satisfies
m(T,e) = e.

Hence, this normalization accounts to fixing the values of the function m at some value of the vector
X. If for example, m(T,e) = ¢ - T, then this is satisfied for T = 1. Somewhat more generally, we
could require that

m(l'o, T1, 6) =&

for all zg and some given T, where X = (X, X3). If, for example, m(z¢,Z1,¢) = ¢ - Ty + r(z0, T1),
where r(zg,z1) = 0 when z; = T, then m would satisfy this. Note that the structure would not
need to be maintained when X; # T;.

An alternative route to choosing a normalization, is to see whether the restrictions of economic
theory that are implied on the function m could be used to restrict the set of functions v in such a
way that no two different functions that satisfy those restrictions can be strictly transformations of
each other. Suppose for example that the function m is homogeneous of degree one in ¢ and some
other of its arguments, on some given ray from the origin. More specifically, suppose that, for some
X = (To,T1), some o € R, some Z, and all A > 0

m(To, A\T1, A\E) = A where m(To,T1,8) = «
Then, using arguments as those in Matzkin (1992, 1994), one can show that for any two conditional
inverse functions v, corresponding to two different functions m, it is not possible to write one of
those v functions as a strictly increasing transformation of the other. One can obtain the same
effect if the function m is such that for some 7;, some a € R, all o and all A > 0

m(zg, A\T1, A\&) = Ao where m(zg,T1,8) = a.

When m is a profit function or a cost function, m is homogeneous of degree one in all or some of its
arguments. Hence, in these cases, identification requires only a location normalization, which can



be imposed by fixing the value of the function at one point.

If it is reasonable to assume that the v function is additive in one of its arguments, then, again
one can show that no two different functions v can be written as strictly increasing transformations
of each other (see Matzkin (1992,1994)). More explicitly, suppose that X = (Xo, X11, X12) is such
that X12 c R, and that

v(2o, T11, T12,y) = 7(T0, T11,Y) + T12
where for some (To,Z11,7), 7(To, T11,7¥) = a. Then, the inverse function m has the form
m(zo, T11, T12,€) = 8(To, T11,€ — T12)  Where s(To, 711, ) = 7.

This specification can be seen as a nonparametric, partially nonadditive generalization of the trans-
formation model studied in Horowitz (1996), where Y = A™1(8'X +¢), A~! is unknown and strictly
increasing, and the distribution of ¢ is unknown. In Horowitz (1996), the value of A is specified
at one point and the absolute value of the coefficient of one coordinate of X is set to 1. In our
specification, we specify the value of s at the point (T, Z11, @) and set the coefficient of X5 equal
to 1. (Note also the resemblance with the parametric, random production function specified in
MdElroy (1987)). The identification here can be also achieved if

m(l’o,l'll,l'lg,S) = 3(1‘0,1‘11,6 — l’12>

where for some 71, and all g, s(xg,T11, @) = 7. This would be satisfied, for example, if the function
m were such that m(xg,Z11,12,€) = n1(T11, T12 — €) + n2(xg, T11), for some unknown functions n,
and ny such that ny(zg, T11) = 0 for all z5. Note that this function need not be additively separable
in the ny; and ny functions when Xy # Ty;.

Other specifications could be developed by using, as it was exemplified in the last paragraphs,
the result of Lemma 1.

3. Estimation of the Basic Model

To develop estimators for the function m and the distribution of ¢ in the basic model (2.1), we will
derive expressions for these, in terms of the distribution of the vector of the observable variables.
We will do this for the three basic specifications described in Section 2. Analogous expressions
could be obtained for other specifications of the function m. Once the unknown functions and
distributions are expressed in terms of the distribution of (Y, X), we will derive estimators for these
unknown functions and distributions by substituting the distribution of the observable variables
with a nonparametric estimator of it. While we could consider using any type of nonparametric
estimator for the this distribution, we present here the details and asymptotic properties for the
case in which the conditional cdf’s are estimated using the method of kernels. To express the
unknown functions and distributions in terms of the distribution of the observable variables, let
X = (Xo, X;). We will make the following assumptions:

Assumption I.1: ¢ is independent of X7, conditional on Xj.



Assumption I.2: For all X, m is strictly increasing in €.

Assumption I.1 guarantees that, conditional on Xy, the distribution of ¢ is the same for all values
of X;. Although we explicitly write X, as an argument of the function m, this is not necessary. The
vector Xy may be such that the function m is not a function of it. Assumption 1.2 guarantees that
the distribution of € can be obtained from the conditional distribution of Y given X.

Under these assumptions, the mapping between the unknown functions m and F x and the
distribution of the observable variables Fy x is given by

(3.1) Flxo=ao(€) = Fy|x=¢ (m(x,e)) foralleec Fand x € A,

This is because Fy|x,—a,(€) = Pr (e <e|Xo=x0) = P (e <e|Xo =20, X1 =21) = Pr(m(X,¢) <
m(z,e) | X =z ) =Pr(Y < m(z,e) | X =12) = Fyjx=o (m(z,¢e)). The first equality follows by
the definition of F, the second follows by the conditional independence between € and X, the third
follows by the monotonicity of m(z,-) in its last argument, the fourth follows by the definition of
Y, and the fifth equality follows by the definition of Fyx.

Equation (3.1) provides an easy interpretation of m(z,e). From these equations it follows that
m(z,e)is the same quantile of the distribution of Y given X = z as the quantile that e is of the
distribution of e conditional on Xj. In other words, let ¢ be such that e is the ¢"* quantile of Fy|x,;
then, by (3.1), m(z, e) must be the ¢ quantile of the conditional distribution, Fy|x—,, of Y given
X = x. The set {m(z,e)|x € A} then represents the set of the conditional ¢ quantiles of the
distribution of Y given X.

3.1. Specification I

Consider first the case where

(I.1) m(zo,T1,e) = € for some T; and all 2y, and Assumptions 1.1 and 1.2 are satisfied.
Letting X7 =7 in (3.1), it follows that for all zy and all e,

(3.2) Feixo=ao(€) = Fy|x=(a03) (€) -
Hence, the conditional distribution of £ given X is the value of the conditional distribution of Y
when X = (20, 71). To derive an expression for the function m, we note that since Y = m(X, ) and
m(z,-) is strictly increasing, the conditional cdf of Y given X = z is strictly increasing on the set

m(z, E) = {y|ly = m(x,¢), € € E}; hence Fy|x has an inverse on m(z, E). From (3.1) and (3.2), it
then follows that for all (zg, z1),

(3:3) m(x,€) = Fy\_g ) (Frix=tmom) (€))
Suppose, next that

(I.2) m(xg,Z1,€) = ¢ for some T; and all 2o, and Assumptions I.1" and 1.2 are satisfied,



where
Assumption I.1%: ¢ is independent of (X, X3).
then, we have that
(3.1) F.(e) = Fy|x=c (m(z,e)) forallec FE and x € A,
(3.2") F.(e) = Fy|x,—= (e), and
(3.3) m(@,€) = Fyx_(upun) (Frixi=s (€)).
Expression (3.17) follows because F.(e) = P(e<elX =x) = Pr(m(z,e) < m(z,e) | X =z ) =

Pr(Y < m(z,e) | X =) = Fy|x=s (m(x,e)). Expression (3.2") follows by, first, letting X; =7,
n (3.1’), so that for all e and xy,

Fee) = Fyx=(om) (€)
Then, since [ f(xo| X1 = T1) dzo = 1, it follows that
F.(e) = [ Fy|x=(woz) (€) f(z0|X1 =T1) dxo
e f(sxoxl)fxoxl) ds dr

0 f(zo,x1) f(=z1)
_f gswlzd

= Fy|x,=z, (e) .
Expression (3.3’) then follows from (3.1’) and (3.2).
Finally, suppose that
(I.3) m(%1,e) = ¢ for some T, and Assumptions 1.1’ and 1.2 are satisfied.
Then, following arguments similar to the ones given above, we have that
(3.2") F.(e) = Fy|x,=z (e), and

(3.3") m(z,e) = Fylx,_p (Fyix,=, (¢)).

3.2. Specification II

Consider next the case where



(IT.1) Assumptions 1.1’ and 1.2 are satisfied, and for some 71,z some o € R, all xg, and all A
such that \z € £

m(xg, A\T1, Ae) = A where m(z0,71,€) = a.
Then, given any A and letting x; = AT, and e = g, we have, from (3.1), that for all g, Fy|x,=z, ()

= Fy|x=(wopz1) (M(T0, AT1,AE)) = Fy|x=(zx3:) (M), where the second equality follows because
m(zo, A\T1, AE) = Am(xg,Z1,Z) = Aa. In particular, for any e € E,

(3.4) Frixo=ao(€) = Fy|x=(zo,(e/2m) ((€/E))
by letting A = (e/€). Hence, F}x,—s,(e) can be recovered from the conditional cdf of ¥ given X,

when y = (e/g)a and x = (x0, (e/€)T;) . Since the strict monotonicity of m(z,-) implies that Fy|x
has an inverse on m(z, F), it follows from (3.1) and (3.4) that

(3.5) m(z,e) = Fylx—y (Fyix=oe/mm ((e/2)a)),

which provides the mapping between m(zx, e) and the distribution of the observable variables.
Next, suppose that

(I1.2) Assumptions 1.1 and 1.2 are satisfied, and for some 7, g, some o € R, all 2y and all A
such that \z € F,

m(xg, A\T1, \e) = A where m(z0,71,8) = a.

Then, using the same reasoning as used for the case where m(zg,T1,¢) = &, we will have that (3.17)
is satisfied, as well as

(3.4,) F( ) FY|X1 ((e/E)z1) ((6/5) ) and
(3.5") m(zg,x1,€) = F;|X (w0,1) (FY\Xl (e/om) ((e/E)a ))
When the specification is given by

(I1.3) Assumptions .1 and 1.2 are satisfied, and for some Ty, 71,8, @ € R, and all A such that
N eEFE

m(To, A\T1, A\€) = A where m(Ty,T1,¢) = q,
we can show that

F.(e) = Fy|x=. (m(z,¢)),

which together with the specification implies that

(3.4") F.(e) = Fy|x=@o,(e/m)z) ((e/E)a) ,
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and for all X = (20, 2),

(3.5") m(z,e) = F}:\g(:w (FY\X:(EO,(e/E)E) ((e/€>a>) .

3.3. Specification III

Finally, we consider the case where for some unknown function s(-),

(ITL.1) m(zg, 211, 12,€) = s(xo, T11,€ — T12), for all xg, s(zo,T11,) = T, and Assumptions 1.3
and 1.4 are satisfied,

where
Assumption 1.3: ¢ is independent of X; = (Xj1, Xi2), conditional on Xj.
Assumption I.4: For all (zg,x11), s(xo, %11, ) is strictly increasing
Then,
(3.6) Flixg=so(€) = Fy|x=s (s(x0, 11,6 —112)) forallee E and x € A,
since Fiix,—a,(€) = Pr (e < e|Xo=x0) = P (e <e|(Xo,X1) = (z0,21)) =Pr(e— X < e—x1o |
(X0, X1) = (20, 71) ) = Pr (s(Xo, X11,€ — X12) < s8(w0, 11,6 — 212) | X = 2) = Fy|x=s (5(T0, 211, — T12)) .

Letting X133 = 713 and X5 = e — «, in (3.6), we get that

(3.7) F5|X0:wo<€) = Fy|X=(woT11.e-0) ()
Hence, the conditional distribution of £ given X is the value of the conditional distribution of Y
at 7, when (X117, X12) = (T11,e — ). To derive an expression for the function s, we use (3.6) and
(3.7) to get

(3.8) s(wo, 211, € — 712) = F{ﬁxzx (FY|X:(w0,511,e—a) @))
If, we consider
Assumption 1.3’: ¢ is independent of X

and the specification is

(IT1.2) m(zg, x11, T12,€) = s(To, T11,€ — T12), for all zg, s(zg,T11, @) = 7, and Assumptions 1.3’
and 1.4 are satisfied,

then, we can average out over xy, using the conditional pdf of X given X7, to get
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(37,) F€<€) = FY|X1:(511,6—04) (g) and
(3.8") s(zo, 711, — T12) = Ffﬁxzx (FY\Xlz(Ell,e—oc) @))
If the specification is

(ITL1.3) m(zo, €11, T12,€) = s(x0, 11, € — X12), for some (To,T11), $(To,T11, @) = 7, and Assump-
tions 1.3’ and 1.4 are satisfied,

then,
(3.7”) FE(G) = FY\X:(EQ,EM,E—OC) (y) and

(3.8") s(wg, z11,€ — T12) = Fﬁg(:w (FY|X1:(EO,EU,efa) (?))

3.4. Estimation using specifications I, II, and III

To develop the estimators, let the data be denoted by { X, Y"}?L1 . Let f(y,z)and F(y, ) denote,
respectively, the joint pdf and cdf of (Y, X), let f (y,x)and F (y, z) denote, respectively, their ker-
nel estimators, and let fAy‘ x=2(y) and Fy| x—=z(y) denote the kernel estimators of, respectively, the
conditional pdf and conditional cdf of Y given X = x. Then,

~

fly2) = s TN, K2, =X)  forall (y,2) € R,
N

F(yv l') = fgoo firoo fN(sz) dS dZ,

. — In(y,x)
frix=2(y) = [t e and

. [ () ds
Frx=W) = =5 oe

where K : R x R — R is a kernel function and oy is the bandwidth. The above estimator for
F(y,x) was proposed in Nadaraya (1964). When K(s, z) = ki(s)ka(z) for some kernel functions
ki:R— Rand ky : R¥ — R,

- _ [l SN () k(X
FY|X:x<y) - f:’ooo fn(sz)ds Zi\le kz(z—xi)

o

where ky(u) = [*_ ki(s) ds. Note that the estimator for the conditional cdf of ¥ given X is different
from the Nadaraya-Watson estimator for Fy|x—.(y). The latter is the kernel estimator for the
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conditional expectation of Z = 1[Y < y| given X = z. For any ¢ and z, F;‘lX:x(t) will denote the

set of values of Y for which Fy‘ x=2(y) = t. The estimators are obtained by substituting Fy|x and

F§|1X by ﬁy|X and ﬁ;‘IX, at the corresponding values of Y and X, in equations (3.2), (3.3), (3.2'),
(3.3), (3.2"), (3.3"), (3.4), (3.5), (3.4"), (3.5), (3.4"), (3.5"), (3.6), (3.7), (3.6"), (3.7"), (3.6"), and
(3.7"). Hence, when (I.1) is satisfied

~

Feixo=ay (€) = ﬁY|X:(wo,51) (e) and

mi(z,e) = Fi Fy|x—(z07) (€)

Y| X=(z0,z1) Y|X=(z0,71) ’

when (1.2) is satisfied,

ﬁg(e) = ﬁy'XlZEI (e) and

m( ) FY‘]X (3607361) (ﬁY|X1:§1 (6)) Y
and when (1.3) is satisfied

Fi(e) = Fyjx,=z (¢) and

—~ -1 -

Mz, e) = Frlx,—a, (Frixis, (€)).

When (II.1) is satisfied,

~

Fa|X0:1:0( ) FY|X (xo,(e/Z)T1) ((6/5) ) and

(. €) = Fylx—y (B ix=uoe/om (/D))
when (I1.2) is satisfied

F.(e) = Fy|x,=((e/oym) ((¢/Z)) and

(w0, 21,€) = Fy\_(gg.00) (Frixi=erzmn ((€/2)a))
and when (I1.3) is satisfied

Fi(e) = Fy|x—@o.(c/m) ((¢/2)) , and

m(ﬂf, 6) FY\X — (FY|X (zo,(e/E)T ((6/8) ))

Finally, when (III.1) is satisfied

~

Flixy=20(€) = Fy|x=(20711,0-a) (T) , and

§($0, T11,€ — 1512) = ﬁ;ﬂﬂ(:x (FY|X:(w0,Ell,e—a) @)) )
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when (II1.2) is satisfied

~

F&‘(e> - FY|X1:(51176—04) (g> and
§<‘T07 Z11,€ — $12) = A;‘}sz (ﬁY|X1=(§11,6*a) (y)) ) and

when (II1.3) is satisfied

~

F&‘(e> - FY|X=(§0,§11,87(1) (y) and

8(wo, T11, — T12) = Fﬁﬂgzx (FY|X1:(EO,511,e—a) @)) :

Note that when ﬁy| X—z 18 not strictly increasing, ﬁ;ﬁX:w may contain more than one value. In
that case we let the estimator be any of those values.

In all the above definitions, the value of the marginal or conditional distribution of € at some given
value e, is given by the value of the conditional distribution of Y, given that X, or, more generally,
a subvector, W, of X, equals a given value, w. This conditional distribution of Y is evaluated at
some given value y. The estimator is obtained by substituting the true conditional distribution of
Y by its kernel estimator. Hence, the consistency and asymptotic normality of the estimator of the
marginal or conditional distribution of £ will follow from the consistency and asymptotic normality
of the kernel estimator for the conditional distribution of Y given that W = w. It follows that the
asymptotic properties for each of the estimators for the distribution of € given above can be derived
from the following result, by substituting the corresponding values of w and y.

Let d denote the dimension of w, and let ' =d+ 1. Let [ K(2)? = [ ([ K(s, z) ds)® dz, where
s € Rand z € R%. We make the following assumptions:

Assumption C.1: The sequence {Y?, X'} is i.i.d.

Assumption C.2: f(Y, X) has compact support © C Rl and is continuously differentiable up
to the order §', for some s’ > 0.

Assumption C.3: The kernel function K(-,-) is Lipschitz, vanishes outside a compact set, inte-
grates to 1, and is of order ¢'.

Assumption C.4: As N — oo, In(N)/No%, — 0 and o3/ No3¢ — 0.
Assumption C.5: 0 < f(w) < 0.

Assumption C.2 requires that the pdf of (Y, W) be sufficiently smooth. Note that this requires &
to have a smooth enough density. The support of f is required to be compact in order to guarantee
that f can be approximated by functions that vanish outside a compact set. Assumption C.3

restricts the kernel function that may be used. Assumption C.4 restricts the rate at which the
bandwidth, oy, goes to zero.
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Theorem 1 :Let ﬁy|W:w(y) denote the kernel estimator for the conditional distribution of Y, con-
ditional on W = w, evaluated at'Y = y. Suppose that Assumptions C.1-C.5 are satisfied, for s’ > 2.
Then,

SUDye g ‘ﬁy‘W:w(y) — FY‘W:w(y)‘ — 0 in probability,
and
VN (Fyjwu(y) = Friw=u(y)) — N (0,Vr) in distribution,

where

Ve ={[ K(Z)z} [FY|W:w(y) (1- FY\W:w(y)} [1/f(w)].

The proof is given in Appendix A.

To study the asymptotic properties of the estimator for the unknown function m, we note that
the value of the function m at any given vector (w,e) is given by the composition of F;ﬁ,‘,zw and
FY|VT/:E(g)7 for some particular vector values w and w, and some particular value e. By F;ﬁ/‘/:w
we denote the inverse of the conditional distribution of Y given that X, or a subvector, W, of X,
equals a value w; by Fy‘ﬁ,:a(é) we denote the conditional distribution of Y given that X, or a
subvector, I/TC of X equals the value w. The subvectors W and I/T/, of X, are not required to have
either the same dimension or common coordinates. The estimator is obtained by substituting the
true conditional distributions of Y by their kernel estimators. Hence, the consistency and asymptotic
normality of the estimator of m will follow from the consistency and asymptotic normality of the
functional, ®, of the kernel estimator for the distribution of (Y, X), which is defined by CID(ﬁy x) =
ﬁﬁlwzw (ﬁy\ﬁ/:g(a)- Let d; denote the number of coordinates of W, dy denote the number of
coordinates of W, and let d = max{d;,ds}. Let 1[-] = 1 if the expression in [] is true; 1[-] = 0
otherwise. Let [K(z2)?> = [(fK(s,z) ds)*dz, where s € Rand z € R%. Our next theorem will
make use of Assumptions C.1-C.3 and the following:

Assumption C.4’: As N — oo, ln(N)/NU?\frl — 0 and 0% NU?\?j -0 (j=1,2).
Assumption C.5: 0 < f(w), f(w) < oo and there exists §,£ > 0 such that Vs € N(m(w,e),§),
f(s,w) > 6.
Theorem 2 :Let n(w,e) = ﬁ;ﬁyzw (ﬁy‘w:g(g)) and n(w,e) = F;ﬁd,:w (FY‘W:E@)). Suppose
that Assumptions C.1-C.3, C.4" and C.5  are satisfied, for s > 2. Then,

n(w,e) converges in probability to n(w,e),

and
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\/NU%2 (n(w,e) —n(w,e)) — N (0,V,) in distribution,

where

F o~ ~@ (17F ~,~<’e“>) _ _
o 2 Y |W=w Y |W=uw 1[d;=d] 1[d2=d]
Vo = {J K(2)°} Ty o @) R

The proof is given in Appendix A.

3.4. Estimation when m is additive separable

In some cases, the economic model might imply that the function m is the addition of two functions,
of which only one of them depends on epsilon. When, for example, the function m denotes a cost of
undertaking a particular project, Y may be the sum of a fixed and a variable cost. If £ denotes the
unobservable price of a variable input, we may specify the model as Y = v;(z1,¢) + vo(z2), where
x5 is a vector of variables that affect the fixed cost, and (x4, €) represents the vector of prices of the
variable inputs.

When the function m is additively separable, we can develop estimators for m with improved
rates of convergence, using ideas similar to those presented in Linton and Nielsen (1995) for the
estimation of additive regression functions. Suppose that

(3.9) m(z1,22,€) = vi(z1,€) + va(z2),
for some unknown functions v; and vy, and that the following is satisfied:
Assumption S.1: E(v(Xy,¢e)| Xy = 22) = [vi(21,¢) f(21,6| Xy = x3) dxy de = 0.

Assumption S is a location normalization, which is needed to guarantee the joint identification
of the nonparametric functions v; and vy. Making use of this assumption and (3.9), it follows that

Ug(l‘g) = E(Y’XQ = iL‘Q).

Hence, v5 can be estimated by the kernel estimator for the conditional expectation of Y given X,
(Nadaraya (1969), Watson (1969)). The asymptotic properties of such an estimator are well known
(Schuster (1972), Bierens (1987)). In particular, its asymptotic distribution does not depend on the
dimensionality of X7, only on that of X,. Let

V = ng(.’I?Q) f(.’l?g) d.’132.
Since Y = m(z1, x5, ), (3.9) implies that
Y = [Y f(z1) dovy = [vi(21,€) f(22) drg +V = vi(z1,6) +V

Thus, letting X7 = (X190, X11), it follows from the arguments in the beginning of this section that
if, for example, the following assumptions hold:
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Assumption S.2: ¢ is independent of X;;, conditional on Xjg.
Assumption S.3: For all X, v;(Xj, ) is strictly increasing in e.
then, for all (x1,e),

(3.10) Fiixp=a10(€) = Fy|x =2, (v1(21,€) +V)

Hence, when the function v, satisfies any of the specifications given above for the function m, we
can obtain estimators for the conditional distribution of € given Xy; and for the function v;. These
estimators are functionals of the kernel estimator for the conditional distribution of Y given X;
and of an estimator for V. The rates of convergence of such estimators will be independent of the
dimensionality of X,. Suppose, for example, that we specify that v; does not depend on X4, and
for some T;; and all e

'Ul(fn, 8) = E.
Let
‘7 = f@g(l‘g) f(l‘g) dZL‘Q.

Then, the estimators for the conditional distribution of ¢ given X3 and for the function v, are,
respectively

~ ~

F€|X10=r10 (6) = FY\X1=($10,§11) (6 + V)

and

~

61(1‘17 6) = ﬁ}:ﬁ)ﬁ:(ﬂcm,xu) (ﬁy\Xl:(mo’E”) (6 + ‘7)) -V

Since, as it is easy to show, v/N(V — V) possess a limiting distribution that is Normal, slight
modifications in the proofs of Theorems 1 and 2 yield the result that, when Assumptions C.1-C.5
are satisfied for s’ > 2, and d denotes the dimension of X7,

~

SUpP, | F2ix10=a10(€) — FE‘Xm:mw(e)‘ — 0 in probability

and
\/Ng(d/z) (ﬁa\Xw:xlo (6) - F5|X10:w10 (6>) - N (O’ VF) ’

where

Vi = {f K(Z)2} [FS\Xw:wm (6)(1 - FS\X10:3610(6))} [1/f(x107511)] )

and when assumptions C.1-C.3, C.4” and C.5’ are satisfied, for s’ > 2
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U1(z1,€) — v1(z1, €) in probability,
and
VNG (5,(z1, ) — vi(21,€)) — N (0,V,) in distribution,

where

fy1x1=(210,011) (V1 (Z11,€))? f(z10,211) f(z10,Z11)

Vn _ {f K(Z)2} Fs|X10—z10(5)(1—F5|X10—z10(e)):| [ 1 4 1 }
and

[K(2)? = [ K(2)? dz, with z € R%.

4. Multivariate Unobservable Random Term

Imposing some structure on the function m, we can use the basic model described in the previous
section to identify and estimate random functions that depend on a vector of unobservable random
terms. Let X = (Xo, X;) be such that Xy = wp, and X; = (wy,...,wg). Let € = (e1,...,€K).
Assume that ¢ is distributed independently of X; conditional on X,. Assume, further, that the joint
distribution of (eq, ..., ek ), conditional on Xy, is the multiplication of the marginal distributions of
the €,’s, conditional on X,. For each k, let wy, denote a subvector of wy. Then, if the function
m can be expressed as a known function of K basic functions, each of which satisfies model (2.1),
it is possible, under some restrictions, to identify the distribution of € and each of the K random
functions.

In particular, our results will allow the identification of each individual function in a summation,
when only the value of the sum of the random functions is observed. They will also allow the
identification of each individual function in a multiplication, when only the total value of the
multiplication of the random functions is observed. The summation case would be important,
for example, if we were interested in identifying individual random behavior from observations on
only the aggregate value of a dependent variable. The multiplicative case would be important, for
example, if we were interested in estimating a multiplicative production function for some product,
when the product is produced using some intermediate inputs. If these intermediate products
were unobserved and were produced by some observable, more basic products, according to some
unknown random production functions, then, using the results below, we can determine that the
random production functions of the unobservable intermediate inputs are identified, as well as the
distributions of the unobservable random terms, .

We present the results for the case in which each of the K basic functions satisfies specification
(I.1). Analogous results can be obtained by using the other possible specifications. Suppose that

(41) m(Xv 5) = T(nl(wouwl:gl)a "'7nK(w0K7wKa€K>>
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for some known, continuously differentiable function r : RX — R and some unknown, nonparametric
functions nq, ...,ng. Note that in this specification, each subvector wy, enters as an argument only
in the function n,. Some, or all, of the coordinates of wy may enter as arguments in some, or all, of
the functions ny,. Let I} x, denote the unknown distribution of ¢, conditional on X,. Let ay, ..., ax
be known numbers. We will make the following assumptions:

(Ai) At (o, ..., k), the function r is strictly increasing in each of its arguments.

(A.ii) For each k, there exists a value Wy, of wy, such that for all values of (wy,, x),
ni(Woy , Wk, €) = €k

(A.iii) For each k, and each (wy, , w, €x) such that wy # Wy, ng(wo,, Wi, €x) is strictly
increasing in ey,

(A.iv) For each k, there exists a value wy of wy such that for all values of (wy,, €x),
nk(w0k7 'lbku gk) = O,

(A.v) For all eq,...,ex, fier,..cex)|Xo=wo (€1, s €K) = I, JerlXo=wo (€k)
(Av') For all e, ...,ex, flr, )€1, €x) = Hle fe (ex)

(AVi) fer,erx(€rs i) = fler, ) xo(€1s s €K),

(AVD) fler,ex(ers o ex) = fey,ex) (€15, €x), and

Assumptions (A.ii) and (A.iii) impose on each function ny the specification (I.1). Assumption
(A.iv) is used to find values of the vector X for which the conditional distribution of ¥ coincides
with the conditional distribution of ng. A very simple example of a function m that satisfies as-
sumptions (A.i)-(A.iv) is m(X,e) = K, exwy, where wy, € R. In this case, Wy = 1 and for ay = 0,
Wy, = 0. Assumption (A.v) states that, conditional on X, the g, are independent across them,
while Assumption (A.v’) states that the €5 are unconditionally independent across them. These
assumptions allow us to identify, respectively, the conditional and unconditional joint distribution of
g, from the marginal distributions. If these conditions are not satisfied, we will only be able to show
the identification of the marginal distributions of the . By Assumption (A.vi), ¢ is independent of
X, conditional on Xy, while by Assumption (A.vi’), € is independent of X = (X, X;). For each £,
let w* denote the value of X; when w; = w; for j # k; let " denote the value of X; when wy = Wy,
and w; = w; for j # k; let X* = (wp,, X1), and, for each k, define the function r : R — R by
ri(t) = r(aq, ..., g1, t, g1, ..., ax ). We can now state the following result, whose proof is given in
Appendix A:

Theorem 3 :(3.1) If Assumptions (A.i)-(A.vi) are satisfied, then F,x,—., and m are identified.
In particular, for oll k and all (wq, wy, ex),

F8k|X0:w0 (ek) = FY\X:(wO,E’“)(Tk(ek)) and
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ng(Wo,, W, €x) = TI;I (FYlle=(wok,wk) (FY|X—(w0@k)(Tk(ek))>

(3.11) If Assumptions (A.i)-(A.iv), (A.v’) and (A.vi’) are satisfied, then Flx,—., and m are
identified. In particular, for all k and all (wg, wg, ex),

F. (ex) = Fy | x,—w (ri(ex)) and

ng(wo, , Wy, ex) =15, (FY&,Q_(w%wk) (FY|X1:mk (rk(ek)))>

Since, in the statement of the above theorem, the random functions, n, and the marginal distrib-
utions of the e;’s are expressed in terms of functionals of the distribution of the observable variables,
we can define estimators for these functions and distributions by substituting the true distribution of
(Y, X) by its kernel estimator, in a similar way as that followed in Section 3. The asymptotic proper-
ties of the estimators for the marginal distributions of the €;’s can be determined using the results of
Theorem 1. The consistency of the estimators for the ny, functions follows by the convergence in prob-

vergence in probability of F;ﬁXk:(ka k) (FY|X1=mk (rk(ek))) to Fﬁl)(k:(wok,wk) (FY|X1:mk (rk(ek))) :

which can be established using the results of Theorem 2, and the continuity of the function r. The
asymptotic distribution of the estimators for the n; functions follow from the results of Theorem 2
and by the standard Delta method, using the continuous differentiability of the function r. Hence,
under the assumptions of Theorem 2, we get that, when (A.i)-(A.vi) are satisfied, and d equals the
dimension of (wq, W"),

\/NO’%2 (ng(wo, , Wk, ex) — ng(wo, , Wk, ex)) — N (0, Vi) in distribution,

where
V(K2 | s e (B g o) T T )] 4 2
b= KR fY\Xk:(ka,wk)(nk(wokawkvek)P Flwo,@®) T flwoy,wk) (Ag)
and
A 811];1 <FY|IXk—(w0k,wk) (FY‘Xl:Ek (Tk(ek)))> 1
k= _

ot

ot o <8rk(nk(w0k,wk’ek))> .
When (A.i)-(A.iv), (A.v’) and (A.vi’) are satisfied,
\/Na}if (g (wo,,, W, ex) — ng(wo, , Wk, €x)) — N (0, V) in distribution,

where

leXk:(ka 7wk)(nk(u)ok 7wkzek))2

Vi = {/ K(2)*} FY'Xl—“’“(""(e’“”(lFYIXl—W’“(’“’c(e’“”)} {fl{dl—ﬂ A= ] (p 2
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, (8Tk1(FYX1_Ek(Tk(ek))(1Fyxl_mk(rk(ek))))) B 1

k — ot (Brk(nk(wok,wk,ek))> :
ot

dy denotes the dimension of W*, dy denotes the dimension of (wp, , w"), and d = max{d;, dy}.

5. Estimation of Derivatives

In many cases in economics, we estimate a function because we are interested in its derivatives.
For example, we might estimate the profit function of a typical firm because we are interested in
the supply and demand functions of that firm. These can be derived by differentiating the profit
function. In this section, we present estimators for the derivatives of the function m, for some of
the specifications presented in Section 2, and show their consistency and asymptotic normality. So,
for example, when m(z, ) represents the profit function of a particular firm, z is the price of the
observable prices and ¢ is the unobservable price of some input, we can use the derivatives of m
with respect to = to determine the supply of the output and the demand of the inputs, for which
their prices are observed. We can use the derivative of m with respect to € to determine the demand
for the input whose price is unobserved. For simplicity, we will only consider the case where ¢ is
independent of X, and where the dimensionality of the subvectors W and W, conditional on which
we have to calculate the conditional distribution of Y is equal to the dimensionality of X. We next,
then, provide estimators for the derivatives of the function m, when ¢ is independent of X and m
satisfies each of the following specifications:

(5.I) m(z,e) =¢
(5.I11) m(z,2) = a and m(A\T, \e) = Aa for all A
(5.II1) m(z1,xe,€) = s(x1,6 — ) and s(T1, ) =7
Let Z and € be such that , if m satisfies specification (5.1),
T =7 and € = e,
if m satisfies specification (5.11),
T =(e/e)T and € = (e/?)a,
and if m satisfies specification (5.11I),
T=(T,e—a)and e=T7.

Then, by the definition of m in each of these cases, it follows that
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(5.1) [™) f(s, ) ds = f(x) f)g&? 5

To obtain an estimator for the derivative of m with respect to z, we differentiate both sides of (5.1)
with respect to x. This gives

m(z,e) Of(s,x om(z.e)  Of(x ~
Jriee) 2B ds + f(m(z,e), 0) 252D = UL B (@),

which implies that

oOm(z,e) 1 of(z) F

() — 1
ox f(m(z,e),z) Oz Y|X=IE(€> f(m(z,e),z) f

m(z,e) Bfa{ 5.2) dg

The estimator for the derivative of m with respect to x is then defined by:

9 om(ze) _ 1 of@) o (&) 1 m(z,e) 8f(s,z)
(5 ) Oox f(m(z,e),z) O Y\X::r(e) f::(m(x,e),w)f ox dS,

~

where mi(z, e) is the estimator of m(z,e) defined in Section 3, f(m(z,e),z) is the kernel estimator
for the joint pdf of Y and X, evaluated at the vector (m(z,e),z), Fy x_z(€) is the kernel estimator

~

for the conditional cdf of Y given X = 7 evaluated at Y = €, and df(z)/0x is the derivative with
respect to x of the kernel estimator for the pdf of X evaluated at X = z. -
The following result establishes the consistency and asymptotic normality of Om(z,e)/0x.

Theorem 4 : Suppose that Assumptions C.1-C.3, C.4’ and C.5’ are satisfied forw = &, w = z, and
s’ > 3. Then,

(%) Mma:f_’el converges in probability to J_lamage :

and

(ii) VNo§/H <8m(9(§’e) — 8m8(§’e)> — N (0, Va,) in distribution,
where

_ F.(e) (1=F:(e)) 0K (s,2) 0K (s,2) !
Vor = 7y s mGo /@ {f (J #5as) (1 #z=tds) dz]

—

The asymptotic variance of dm(z, e)/0x depends on the derivative of the kernel and on the vari-
ance due to the variance of Fy|x—.(m(z,e)). The asymptotic variance of Fy y_z(€) does not affect

the asymptotic variance of Gm(m,/é\) /0x, because ﬁYl x_5(€) does not depend on the value x. Since
fyix=z(m(z,e)) = fe(e)/(Om(z, e)/O¢), the variance increases the smaller is the density of € at e and

the larger is the derivative of m with respect to . Note that the rate of convergence of 8m(mjg) /0x is
slower than that of m(z, e). This is because, in contrast to m(zx, e), am(mjg) /O0z depends on deriv-
atives of the pdf of X and of the joint pdf of (Y, X), which converge at a rate oy—times slower
than the estimators for those pdf’s.
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It is possible to derive also estimators for the derivatives of the function m with respect to €. In
this case, however, the estimators have different forms depending on the specification of the function
m. Suppose that m satisfies specification (5.1). Then, the definition of m implies that

fm(z’e) f(s,x) ds f f(s,T) ds
f(2) @

Hence,
om(z,e) fy|x=z(e)
9 fyix=o(m(z,e))’

The estimator for the derivative of m with respect to ¢, in this case, is then defined by

(5 3) 877/1-(;6 _ fY\X:E(e)

T fyix—s(m(z,e)”

Suppose now that m satisfies specification (5.11). Then, by the definition of m it follows that

fm(z ©) (s,x) ds f(e/a)a (s,(e/E)T) ds

(5.4) I = L—2h

Differentiating both sides of (5.4) with respect to € gives

fyix=2(m(z, 6))% = (/) frix=(e/zpm ((e/E)x)

JOP (LD i as (YD @)y e (/)
+ (5] - (TEE)

which implies that

om(x,e) _ (/E)fy|x—(e/m)z)((e/E)a)
de fy|x=2(m(z,e))

N O (UAPD Y @y as (2LULDD) @) By e (/7))

fyix= x(m( )) f(e/E)z) fy|x=z(m(z,e)) (f((e/E)T))

Hence, in this case, the estimator for Om(z, e)/0e is defined by

(5 5) Bm(zz e _ (a/f‘?)fY\X (e/mz((e/E)a)

fY|X +(m(z,e))

f(e/s)a( 8 (s, gegszz]> (T/7) ds (M> (z/2)

~

e TR Foeatotme) R | Y x=teram ((e/€)a).
Finally, if m satisfies specification (5.III), it follows by the structure of m that

om(z1,x0e) _  Om(z1,m2,€)
Oe _ (91'2

Hence,

— —

(5 6) om(z1,x2,e) _  Om(x1,22,¢)

Oe 8:22
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The next theorem establishes the asymptotic properties of the estimators for Om(z, e)/0e defined
in (5.3), (5.5) and (5.6).

Theorem 5 : Suppose that Assumptions C.1-C.3, C.4" and C.5" are satisfied with w =z, w = x,
and s' > 3. Then,
(i) 2429 copverges in probability to 274,

If m satisfies specification (5.1) and m(z,e) # e,

\/NO’%FH)D (8'”5:’6) — 8m{§:’e)> — N(0,V79:) in distribution,

where

- 2 fY\X:E(e) fY\X:E(e)2
Vioe = (] K(s,2)"dsdz) {fyx_m(m,e))? &+ fyx_m<m<x,e>>3f<x>}

If m satisfies specification (5.11),

\/NU%/Q)H (8m(§:’e) — 8m{§:’e)> — N (0, Vi1.0:) in distribution,

where
Vitoe = Frctmtsa R 1o {(z)/ {f (s 2522ds) (1 MKaﬁﬁdS)/dZ] (g)}

And if m satisfies specification (5.111),

\/NU%/Q)H (8m(§:’e) — 8m{§:’e)> — N (0, Virr:) in distribution,

where

_ () (1-F(e) OK(s.21.20) )
Vitro: = 7 G0 2@ {f (/& 5edas) dzldzz}

When m satisfies specification (5.1), the rate of convergence of am(m,/\e) /Oe is the same as that
of Gm(x/,\e) /O0x because the slowest converging terms of both estimators depend on derivatives with
respect to x of the pdf of X and the joint pdf of (Y, X). The asymptotic variance of Gm(x/,z) /Oe is
due to the variance of the estimator of Fy,x_z(€). Although the value of £ at which the function m is
evaluated affects both, Fy|x—.(m(x,e)) and Fy x_z(€), the estimator of the derivative of Fy|y_z(€)
with respect to € converges at a slower rate than the estimator of the derivative of Fy|x—,(m(z,e))
with respect to ¢.

When m satisfies specification (5.1), Fyx_z(€) does not depend on the value e at which the

function m is evaluated. Hence, the asymptotic variance of Gm(:g?:) /Oe depends only on the
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asymptotic variance of the estimator of the derivative of Fy|x—,(m(x,e)) with respect to e. The

rate of convergence of 8m(:g;:) /Oe is higher when m satisfies specification (5.I) than when it satisfies
specification (5.II) because the derivative of Fy|x—,(m(z,e)) with respect to € depends only on the
values, and not the derivatives, of the pdf’s of X and of (Y, X).

When m satisfies either specification (5.I) or specification (5.1I), the asymptotic covariance
between 8m(:1: e)/0z and 8m(:v e)/0e is zero. When m satisfies specification (5.II), this is because
the asymptotic distributions of these estimators are driven by kernel estimators of the pdf of (Y, X)
evaluated at different points. When m satisfies specification (5.1), the zero asymptotic covariance
is a consequence of the different rates of convergence of the estimators.

6. Simulations

To provide an indication of how the new estimators perform in practice, we present below the results
of simulations performed using the following two designs:

e Design I: 'Y = X + ¢,
where X ~ N(0,1) and e ~ N(0,1).

o Design II: Y = & X* (—¢)73
where X ~ N(6,1) and € ~ N(—6,1).

The first design was chosen to evaluate how badly the estimator may perform, relative to the
best estimator that one can use when the function is additively separable in € and its parametric
form is known. Also, since the function satisfies specifications (5.I) and (5.1I), in Section 5, it allows
one to evaluate the effect of the two normalizations. This design was estimated using the first
normalization with T =% = 1, a = 2, and using the second normalization with T = 0. Design II is
the profit function generated from a production function of the form p(z) = 2* where a = .75, X
is the price of the output, and —e is the price of the input z. We write this function in terms of
—e to transform it so that it is strictly increasing in e. Alternatively, we could have calculated the
estimators under the restriction that m is strictly decreasing in . This would have only modified
the estimator for F.(e). Instead of deriving F.(e) from the value of ﬁy‘ x—2(y) at a particular y and
x, we would have derived ﬁs(e) from 1 — ﬁy‘ x—2(y) at the same particular y and z. The expression
for m would have been the same as for the strictly increasing case. We used this design with T
=% = 6and a = 6 - 33/4%. The normal distributions, which were chosen for X and ¢ in these
designs, violate the assumption that the support of the observable variables is compact, but, since
we are dealing with a finite set of data, we could have obtained the same results if we specified the
distributions of X and ¢ so that they are equal to the chosen distributions only on a large enough
compact set.

For each design, we run 500 simulations of 500 observations each. The estimators of the joint
pdf and cdf of (Y, X) were obtained using a multiplicative Gaussian kernel. The bandwidths were
chosen to roughly minimize the integrated squared error of fy x : [(fyx(y,z) — fvx(y,x))*dydz.
The following table specifies the bandwidth sizes that were used for each design:

oy ox
Design I | 0.4031 | 0.2928
Design II | 0.0596 | 0.2619
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The results obtained for Design I, Normalization I(where m satisfies specification (II)) and for
Design I, Normalization II (where m satisfies specification (I)) are presented at the end of the paper,
together with the results obtained when the function m is estimated by Least Squares. The latter
estimator is denoted by myg. The estimators are evaluated at points where x equals the 25th, 50th,
and 75th quantile of the distribution of X, and where € equals the 10th, 50th, and 90th quantile
of its distribution. We do not look at the same quantiles for X and e to avoid considering too
many points where the value of the function m is known. For each point, the tables show the bias,
variance, mean square error, and asymptotic variance of the estimator.

Comparing the results obtained from both normalizations, we can see that, at the evaluated
points, the MSE’s of the estimators obtained using Normalization I are, in general, larger than
those obtained using Normalization II. The MSE’s of mand F. obtained using normalization I
can be up to 3 and 4 times larger, respectively, than when using Normalization II. The MSE’s of
Om/Ox can be up to 1.5 times larger, and that of 9m/0e can be up to 18 times larger than when
Normalization II is used. Comparing the results obtained from both normalization with those of
the Least Squares (LS) estimators, we can see that the MSE of m when using Normalization I can
be up to 25 times larger than when using LS, while the MSE of m when using Normalization II can
be up to 7 times larger than that of the LS estimator. The MSE of dm/Jdx can be up to 52 times
(for Normalization I) and 45 times (for Normalization IT) than the MSE of the LS estimator. The
MSE of the LS estimator for 875/\ Ot is zero. So, the nonparametric estimator for 877;/\ Oe obviously
performs much worse than the LS estimator.

The superiority of the LS estimator gets reversed when the function m is nonlinear and nonad-
ditive in €. Following the previous results, we present the results for the nonparametric estimator
using Normalization I and the data generated by Design II, together with the corresponding results
for the LS estimators.

From these results, we can see that the MSE of the LS estimator of m can be 1656 times
larger than that of the nonparametric estimator. The difference is lessened when we compare
the estimators for the derivatives. The MSE of the LS estimator of dm/0zis 101 times larger
than that of the nonparametric estimator at the point in the southwest corner, but it is 16 times
smaller than the nonparametric estimator at the southeast corner. The relative performance of the
nonparametric estimator of dm/de is better than the relative performance of the nonparametric
estimator of Om/0z. The MSE of the LS estimator of dm/0eis between 139 and 255 times larger
than that of the nonparametric estimator at the points in the north, while its MSE is between
15 and 26 times larger than the MSE of the nonparametric estimator at the points in the south.
We should note that the nonparametric estimators for the derivatives of m are very jagged, which
suggest that the bandwidths used are too small. When the bandwidths are increased to twice their
previous sizes, the MSE’s of Om/0x and Om/0e are, in general, smaller. We present these MSE’s
following the previous results.
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Design I / Normalization I

T e m Bias(m) | Var(m ) | MSE(m | Avar(m)
-0.6745 | -1.2816 | -1.956041 | -0.055164 | 0.027445 | 0.030488 | 0.049802
-0.6745 | 0.0000 | -0.674490 | 0.045053 | 0.013064 | 0.015093 | 0.017112
-0.6745 | 1.2816 | 0.607062 | 0.158777 | 0.040833 | 0.066043 | 0.049802
0.0000 | -1.2816 | -1.281552 | -0.103554 | 0.035620 | 0.046344 | 0.046197
0.0000 | 0.0000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.015174
0.0000 | 1.2816 | 1.281552 | 0.115072 | 0.039464 | 0.052706 | 0.046197
0.6745 | -1.2816 | -0.607062 | -0.166698 | 0.037238 | 0.065027 | 0.049802
0.6745 | 0.0000 | 0.674490 | -0.054845 | 0.011865 | 0.014873 | 0.017112
0.6745 | 1.2816 | 1.956041 | 0.049250 | 0.029154 | 0.031580 | 0.049802
e F Bias(F) | Var(F) | MSE(F) | AVar(F)
-1.6449 1 0.05 | 0.005751 | 0.000593 | 0.000626 | 0.000887
-0.6745 | 0.25 | 0.008865 | 0.000766 | 0.000845 | 0.001137
0.0000 | 0.50 | -0.001386 | 0.000909 | 0.000911 | 0.001207
0.6745 | 0.75 | -0.007094 | 0.000712 | 0.000762 | 0.001137
1.6449 | 0.95 | -0.006719 | 0.000546 | 0.000591 | 0.000887
X e Om/O0x | Bias(Om/0z) | Var(Om/0x) | MSE(Om/0x) | Avar(0m/0x)
-0.6745 | -1.2816 | 1.000000 -0.096347 0.093556 0.102839 0.103337
-0.6745 | 0.0000 | 1.000000 -0.071001 0.060002 0.065043 0.055549
-0.6745 | 1.2816 | 1.000000 -0.057210 0.088162 0.091435 0.103337
0.0000 | -1.2816 | 1.000000 -0.065292 0.079831 0.084094 0.082313
0.0000 | 0.0000 | 1.000000 -0.064566 0.051048 0.055217 0.044248
0.0000 | 1.2816 | 1.000000 -0.094097 0.071034 0.079888 0.082313
0.6745 | -1.2816 | 1.000000 -0.087892 0.089573 0.097298 0.103337
0.6745 | 0.0000 | 1.000000 -0.079195 0.060462 0.066734 0.055549
0.6745 | 1.2816 | 1.000000 -0.098362 0.100482 0.110157 0.103337
X e Om/0e | Bias(Om/0e) | Var(0m/0e) | MSE(Om/0e) | Avar(0m/0e)
-0.6745 | -1.2816 | 1.000000 0.141215 0.339550 0.359492 0.187114
-0.6745 | 0.0000 | 1.000000 0.074860 0.086538 0.092142 0.044248
-0.6745 | 1.2816 | 1.000000 0.112037 0.298026 0.310578 0.187114
0.0000 | -1.2816 | 1.000000 0.132217 0.325391 0.342872 0.187114
0.0000 | 0.0000 | 1.000000 0.064566 0.051048 0.055217 0.044248
0.0000 | 1.2816 | 1.000000 0.115924 0.304955 0.318394 0.187114
0.6745 | -1.2816 | 1.000000 0.134001 0.327781 0.345737 0.187114
0.6745 | 0.0000 | 1.000000 0.072430 0.085134 0.090380 0.044248
0.6745 | 1.2816 | 1.000000 0.116829 0.316786 0.330435 0.187114
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Design I / Normalization II

X e m Bias(m) | Var(m) | MSE(m) | Avar(m)
-0.6745 | -1.2816 | -1.956041 | 0.039292 | 0.018318 | 0.019862 | 0.031832
-0.6745 | 0.0000 | -0.674490 | 0.045053 | 0.013064 | 0.015093 | 0.017112
-0.6745 | 1.2816 | 0.607062 | 0.045520 | 0.018562 | 0.020634 | 0.031832
0.0000 | -1.2816 | -1.281552 | -0.000000 | 0.000000 | 0.000000 | 0.028227
0.0000 | 0.0000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.015174
0.0000 | 1.2816 | 1.281552 | 0.000000 | 0.000000 | 0.000000 | 0.028227
0.6745 | -1.2816 | -0.607062 | -0.062862 | 0.017918 | 0.021869 | 0.031832
0.6745 | 0.0000 | 0.674490 | -0.054845 | 0.011865 | 0.014873 | 0.017112
0.6745 | 1.2816 | 1.956041 | -0.053940 | 0.018461 | 0.021370 | 0.031832
e F Bias(F) | Var(F) | MSE(F) | AVar(F)
-1.6449 | 0.05 | 0.020293 | 0.000195 | 0.000607 | 0.000229
-0.6745 | 0.25 | 0.022256 | 0.000676 | 0.001172 | 0.000906
0.0000 | 0.50 | -0.001386 | 0.000909 | 0.000911 | 0.001207
0.6745 | 0.75 | -0.024429 | 0.000717 | 0.001313 | 0.000906
1.6449 | 0.95 | -0.020745 | 0.000194 | 0.000625 | 0.000229
X e Om/0x | Bias(Om/0z) | Var(Om/0x) | MSE(Om/0x) | Avar(Om/0x)
-0.6745 | -1.2816 | 1.000000 -0.079104 0.087267 0.093525 0.103337
-0.6745 | 0.0000 | 1.000000 -0.071001 0.060002 0.065043 0.055549
-0.6745 | 1.2816 | 1.000000 -0.069602 0.081449 0.086293 0.103337
0.0000 | -1.2816 | 1.000000 -0.053773 0.072362 0.075253 0.082313
0.0000 | 0.0000 | 1.000000 -0.064566 0.051048 0.055217 0.044248
0.0000 | 1.2816 | 1.000000 -0.081356 0.068593 0.075212 0.082313
0.6745 | -1.2816 | 1.000000 -0.095052 0.079552 0.088587 0.103337
0.6745 | 0.0000 | 1.000000 -0.079195 0.060462 0.066734 0.055549
0.6745 | 1.2816 | 1.000000 -0.077366 0.089999 0.095985 0.103337
X e Om/0e | Bias(Om/0e) | Var(Om/0e) | MSE(Om/0e) | Avar(0m/0e)
-0.6745 | -1.2816 | 1.000000 0.006771 0.023265 0.023311 0.059803
-0.6745 | 0.0000 | 1.000000 -0.001166 0.011048 0.011050 0.026308
-0.6745 | 1.2816 | 1.000000 0.001031 0.021021 0.021022 0.059803
0.0000 | -1.2816 | 1.000000 0.000000 0.000000 0.000000 0.053030
0.0000 | 0.0000 | 1.000000 -0.000000 0.000000 0.000000 0.023329
0.0000 | 1.2816 | 1.000000 0.000000 0.000000 0.000000 0.053030
0.6745 | -1.2816 | 1.000000 0.002536 0.019633 0.019640 0.059803
0.6745 | 0.0000 | 1.000000 -0.002955 0.010270 0.010279 0.026308
0.6745 | 1.2816 | 1.000000 0.007917 0.023745 0.023807 0.059803
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Design I / Least Squares

X e m Bias(mrs) | Var(mps) | MSE(mLs)
-0.6745 | -1.2816 | -1.956041 | -0.004112 | 0.002865 0.002882
-0.6745 | 0.0000 | -0.674490 | -0.004112 | 0.002865 0.002882
-0.6745 | 1.2816 | 0.607062 | -0.004112 | 0.002865 0.002882
0.0000 | -1.2816 | -1.281552 | -0.000076 | 0.002090 0.002090
0.0000 | 0.0000 | 0.000000 | -0.000076 | 0.002090 0.002090
0.0000 | 1.2816 | 1.281552 | -0.000076 | 0.002090 0.002090
0.6745 | -1.2816 | -0.607062 | 0.003961 0.003203 0.003219
0.6745 | 0.0000 | 0.674490 | 0.003961 0.003203 0.003219
0.6745 | 1.2816 | 1.956041 | 0.003961 0.003203 0.003219
X e om/0x | Bias(Omps/0x) | Var(Omps/0zx) | MSE(Omps/0x)
-0.6745 | -1.2816 | 1.000000 0.005984 0.002075 0.002111
-0.6745 | 0.0000 | 1.000000 0.005984 0.002075 0.002111
-0.6745 | 1.2816 | 1.000000 0.005984 0.002075 0.002111
0.0000 | -1.2816 | 1.000000 0.005984 0.002075 0.002111
0.0000 | 0.0000 | 1.000000 0.005984 0.002075 0.002111
0.0000 | 1.2816 | 1.000000 0.005984 0.002075 0.002111
0.6745 | -1.2816 | 1.000000 0.005984 0.002075 0.002111
0.6745 | 0.0000 | 1.000000 0.005984 0.002075 0.002111
0.6745 | 1.2816 | 1.000000 0.005984 0.002075 0.002111
X e om/0e | Bias(Omps/0e) | Var(Omps/0e) | MSE(Ompg/0¢)
-0.6745 | -1.2816 | 1.000000 0.000000 0.000000 0.000000
-0.6745 | 0.0000 | 1.000000 0.000000 0.000000 0.000000
-0.6745 | 1.2816 | 1.000000 0.000000 0.000000 0.000000
0.0000 | -1.2816 | 1.000000 0.000000 0.000000 0.000000
0.0000 | 0.0000 | 1.000000 0.000000 0.000000 0.000000
0.0000 | 1.2816 | 1.000000 0.000000 0.000000 0.000000
0.6745 | -1.2816 | 1.000000 0.000000 0.000000 0.000000
0.6745 | 0.0000 | 1.000000 0.000000 0.000000 0.000000
0.6745 | 1.2816 | 1.000000 0.000000 0.000000 0.000000
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Design II / Normalization I

X e m Bias(m) | Var(m) | MSE(m) | Avar(m)
5.3255 | -7.2816 | 0.219734 | 0.002511 | 0.000572 [ 0.000579 | 0.000456
9.3255 | -6.0000 | 0.392749 | 0.015278 | 0.000788 | 0.001021 | 0.000738
2.3255 | -4.7184 | 0.807553 | -0.029261 | 0.008057 | 0.008914 | 0.014678
6.0000 | -7.2816 | 0.354044 | 0.006306 | 0.001094 | 0.001133 | 0.001099
6.0000 | -6.0000 | 0.632813 | 0.000000 | 0.000000 [ 0.000000 | 0.001698
6.0000 | -4.7184 | 1.301161 | -0.094294 | 0.022210 | 0.031101 | 0.035347
6.6745 | -7.2816 | 0.542156 | 0.001258 | 0.001945 | 0.001947 | 0.002778
6.6745 | -6.0000 | 0.969041 | -0.025075 | 0.003811 | 0.004439 | 0.004491
6.6745 | -4.7184 | 1.992501 | -0.212119 | 0.046652 | 0.091647 | 0.089355
e F Bias(F) | Var(F) | MSE(F) | AVar(F)
-7.6449 1 0.05 | 0.028041 | 0.000915 | 0.001701 | 0.000992
-6.6745 | 0.25 | 0.030218 | 0.001118 | 0.002031 | 0.001271
-6.0000 | 0.50 | -0.006567 | 0.001260 | 0.001303 | 0.001350
-5.3255 | 0.75 | -0.037964 | 0.001188 | 0.002629 | 0.001271
-4.3551 | 0.95 | -0.032881 | 0.001011 | 0.002092 | 0.000992
X e Om/0x | Bias(Om/0z) | Var(Om/0x) | MSE(Om/0x) | Avar(0m/ox)
5.3255 | -7.2816 | 0.165042 0.006869 0.001542 0.001590 0.001183
5.3255 | -6.0000 | 0.294994 -0.015741 0.004668 0.004915 0.002993
0.3255 | -4.7184 | 0.606554 -0.070023 0.075588 0.080491 0.038067
6.0000 | -7.2816 | 0.236029 0.004099 0.003610 0.003627 0.002447
6.0000 | -6.0000 | 0.421875 -0.015777 0.011761 0.012010 0.006190
6.0000 | -4.7184 | 0.867441 -0.142476 0.120034 0.140333 0.078719
6.6745 | -7.2816 | 0.324912 -0.014610 0.009300 0.009513 0.007205
6.6745 | -6.0000 | 0.580743 -0.050031 0.037556 0.040059 0.018223
6.6745 | -4.7184 | 1.194099 -0.192415 0.408242 0.445265 0.231742
X e Om/0e | Bias(Om/0e) | Var(Om/0e) | MSE(Om/0e) | Avar(0m/0e)
5.3255 | -7.2816 | 0.090530 0.025446 0.002902 0.003549 0.002143
5.3255 | -6.0000 | 0.196374 -0.007714 0.002760 0.002819 0.002384
0.3255 | -4.7184 | 0.513444 -0.069647 0.105880 0.110731 0.068928
6.0000 | -7.2816 | 0.145866 0.017416 0.006009 0.006312 0.005563
6.0000 | -6.0000 | 0.316406 -0.015777 0.011761 0.012010 0.006190
6.0000 | -4.7184 | 0.827281 -0.147779 0.215877 0.237716 0.178945
6.6745 | -7.2816 | 0.223368 0.001552 0.010970 0.010972 0.013045
6.6745 | -6.0000 | 0.484521 -0.062615 0.022314 0.026234 0.014515
6.6745 | -4.7184 | 1.266836 -0.252486 0.946042 1.009791 0.419617
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Design II / Least Squares

X e m Bias(mrs) | Var(mps) | MSE(mgs)
5.3255 | -7.2816 | 0.219734 | -0.978663 | 0.000804 0.958585
5.3255 | -6.0000 | 0.392749 | 0.129874 0.000804 0.017671
5.3255 | -4.7184 | 0.807553 | 0.996621 0.000804 0.994058
6.0000 | -7.2816 | 0.354044 | -0.734285 | 0.001560 0.540735
6.0000 | -6.0000 | 0.632813 | 0.268498 0.001560 0.073651
6.0000 | -4.7184 | 1.301161 | 0.881700 0.001560 0.778955
6.6745 | -7.2816 | 0.542156 | -0.543710 | 0.005129 0.300750
6.6745 | -6.0000 | 0.969041 | 0.310956 0.005129 0.101822
6.6745 | -4.7184 | 1.992501 | 0.569048 0.005129 0.328945
X e om/0x | Bias(Omps/0x) | Var(Omps/0zx) | MSE(Omps/0z)
2.3255 | -7.2816 | 0.165042 0.396400 0.003091 0.160224
5.3255 | -6.0000 | 0.294994 0.266448 0.003091 0.074086
5.3255 | -4.7184 | 0.606554 -0.045112 0.003091 0.005127
6.0000 | -7.2816 | 0.236029 0.325413 0.003091 0.108985
6.0000 | -6.0000 | 0.421875 0.139568 0.003091 0.022571
6.0000 | -4.7184 | 0.867441 -0.305998 0.003091 0.096726
6.6745 | -7.2816 | 0.324912 0.236530 0.003091 0.059038
6.6745 | -6.0000 | 0.580743 -0.019301 0.003091 0.003464
6.6745 | -4.7184 | 1.194099 -0.632657 0.003091 0.403346
X e om/0e | Bias(Omps/0e) | Var(Omps/0e) | MSE(Omypg/0¢)
5.3255 | -7.2816 | 0.090530 0.909470 0.000000 0.827135
5.3255 | -6.0000 | 0.196374 0.803626 0.000000 0.645814
5.3255 | -4.7184 | 0.513444 0.486556 0.000000 0.236737
6.0000 | -7.2816 | 0.145866 0.854134 0.000000 0.729545
6.0000 | -6.0000 | 0.316406 0.683594 0.000000 0.467300
6.0000 | -4.7184 | 0.827281 0.172719 0.000000 0.029832
6.6745 | -7.2816 | 0.223368 0.776632 0.000000 0.603157
6.6745 | -6.0000 | 0.484521 0.515479 0.000000 0.265719
6.6745 | -4.7184 | 1.266836 -0.266836 0.000000 0.071202
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Design II / Normalization I / Large bandwidth

X e om/0x | MSE(Om/0x)
5.3255 | -7.2816 | 0.165042 0.000465
5.3255 | -6.0000 | 0.294994 0.003486
5.3255 | -4.7184 | 0.606554 0.062995
6.0000 | -7.2816 | 0.236029 0.000745
6.0000 | -6.0000 | 0.421875 0.011162
6.0000 | -4.7184 | 0.867441 0.158398
6.6745 | -7.2816 | 0.324912 0.002422
6.6745 | -6.0000 | 0.580743 0.032012
6.6745 | -4.7184 | 1.194099 0.343780

X e om/0e | MSE(Om/0e)
5.3255 | -7.2816 | 0.090530 0.001806
5.3255 | -6.0000 | 0.196374 0.001696
5.3255 | -4.7184 | 0.513444 0.085641
6.0000 | -7.2816 | 0.145866 0.000910
6.0000 | -6.0000 | 0.316406 0.011162
6.0000 | -4.7184 | 0.827281 0.269792
6.6745 | -7.2816 | 0.223368 0.001824
6.6745 | -6.0000 | 0.484521 0.039744
6.6745 | -4.7184 | 1.266836 0.711056

7. Summary

We have presented estimators for models in which the value of a dependent variable is determined
by a nonparametric function that is not necessarily additive in an unobservable random vector. The
estimators for the distribution of the unobservable random variable, the nonparametric function,
and the derivatives of the nonparametric function were derived and were shown to be consistent and
asymptotically normal. The estimators were defined as nonlinear functionals of a kernel estimator for
the distribution of the observable variables. To derive the asymptotic distributions of the estimators,
we first linearized the functionals, by calculating their Hadamard-derivatives, and then applied a
Delta method, as developed in Ait-Sahalia (1994) and Newey (1994).

The results of some simulations indicate that the method may outperform estimators that require
specifying a parametric structure for the function to be estimated, when the specified structure is
incorrect. Since one can rarely find a parametric specification that would perfectly fit the true
function, there seems to be a benefit to using the new estimators.
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Appendix A

We present here the proofs of Theorems 1, 2, 5, and 6. To prove these theorems, we will use a Delta
Method, like the ones developed in Ait-Sahalia (1994) and Newey (1994).

Proof of Theorem 1: Let F' denote the joint cdf of (Y, X), f(y,w) denote its probability den-
sity function (pdf), and f(w) denote the marginal pdf of w. For any function G : R — R,
define g(y,w) = 0""*G(y,w)/Oyow, g(w) = [g(y,w) dy, g(w) = [g(y,w)dy, Gyw-w(y) =
(ff’;og(y,w’)ds) /g(w'), and Gy(y,w) = [Yg(s,w) ds = [1[s < y] g(s,w)ds where 1[-] = 1if
[-] is true, and it equals zero otherwise. Let Cdenote a compact set in R that strictly includes
©, the compact support of (Y x X). Let D denote the set of all functions G : ]jle — R such that
g(y,w) exists and vanishes outside C. Let D denote the set of all functions Gy that are derived
from some GG in D. Since there is a 1-1 relationship between functions in D and functions in D, we
can define a functional on D or on D without altering its definition. Define then the functional
A() by A(G) = Gyw=uw(y). Then, A(F) = Fypy—y(y) and A(F) = Fyjw—u(y). We omit writing
explicitly the dependence of A on yand w, for brevity of exposition.

Let |G| denote the sup norm of g(y,w). Then, for any H such that H vanishes outside a
JYo h(s,w)ds| < a || H],

compact set and ||H|| is sufficiently small, we have that, |h(w)| < a||H]|,
and |f(w) + h(w)| > b|f(w)| for some 0 < a,b < oo. Moreover,

(1) A(F + H) = AF) = (F + H)yjw=uw(y) = Friw=u(y)

= DA(F,H) + RA(F, H), where

fy h(s,w)ds—h(w) Fy|w—w(y)

DA(F,H) = ) and
[ JE L h(sw)ds—h(w) Fyw—.() h(w)
RA(F, H) = i) ] )

It follows that for some ¢ < oo,

(2) IDA(F, H)| <

(F,H)| < 75 1H*

Note the this implies that the functional A is continuous.
Let H = F—F . From (1) and (2), —0(®) = Frw=u®)| < 755 |F— F||+ 552 | F - FH By
Assumptions (A.1)-(A.4) and Lemma B.3 in Newey (1994), HF F H — 0 in probability. Hence,

SUpPcp ’Fy\wzw(y) — Fy|W:w(y)‘ — 0 in probability.

To prove the result about the asymptotic distribution, we note that by (1) and (2), A is
Hadamard differentiable at F'. It then follows by Theorem 3.9.4 in van der Vaart and Wellner
(1996) and the Lemma in Appendix B that

YNGR (AFy) = AF)) = DA (P, N (Fy - )

converges in outer probability to 0. Since
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DA <(F7 \/W?VL(}%Y _ ﬁy)> _ \/W?VL <f (l[sSy]*JiZ\)W:w(y)) (]?(S,w) _ f(s,w)) ds) 7

it follows by the Lemma in Appendix B that

DA ((R N (Fy — ﬁy)) — N(0, Vi)

where

Ve = {1 K(5,2)d)* d=} { (7)1 (Lls < 9] = Frw—ulv))
= {f(f K(s,z)ds)’ dz} ( e ) [FYIW w(Y) (1 — FY\W:w(y))}

f(s,w)ds}

Hence,

\/NO'%’ (ﬁy|W:w(Z/) - FY|W=w<y))
No3k <A(1::Y) - A(ﬁY)>

Proof of Theorem 2: Let F(y,w) denote the distribution function (cdf) of the vector of observ-
able variables (Y, X), f(y,w) denote its probability density function (pdf), and f(x) denote the
marginal pdf of X, and Fy|x—, denote the conditional cdf of ¥ given X = x. For any subvector
W of X, let f(w) denote the marginal pdf of W when W = w, f(y|w) denote the conditional
pdf of Y, conditional on W = w, and Fy|w—.(y) denote the conditional cdf of Y, conditional on

W = w. For any function G : R*1 — R, define g(y,w) = 0*G(y,w)/0ydw, g(w) = [ g(y,w)
dy, g(w) = [ gy, w)dy, Gyiw-w(¥) = (/% 9(y,w)ds) /g(w'), and Gy (y,w) = [* g(s,w)ds =
[1[s < y] g(s,w) ds where 1[-] = 1if [-] is true, and it equals zero otherwise. Further, for any
subvector W of X, define g(w) = g(y,w) = [ g9(y,w, 2) dz, g(w) = [g(y,w,2) dydz, Gypw=uw(y')
= (/Y g(y,w)ds) [g(w'), and Gy (y,w) = [Yg(s,w)ds = [ 1[s < y] g(s,w) ds where 1[] = 1if [
is true, and it equals zero otherwise, and where z denotes the value of the coordinates of X that
are not included in W. Let Cdenote a compact set in R” that strictly includes ©. Let D denote the
set of all functions G : RY — R such that g(y,z) vanishes outside C. Let D denote the set of all
functions Gy that are derived from some G in D. Since there is a 1-1 relationship between functions
in D and functions in D, we can define a functional on D or on D without altering its definition.
Let W and W be two subvectors of X, not necessarily corresponding to the same coordinates of X.
Define the functional ®(-) by ®(G) = GY‘W —w (GY|W w(~)) , where GYW _,, denotes an arbitrary

element of the set GY‘W_  if GY‘W_ is not a singleton. Then, ®(F) = ®(Fy) = n(w, e) and ®(F)
= <I>(Fy) = n(w,e).

Define the functionals n and v by n(G) = Gyw=u(®(G)), and v(G) = Gyyy_5(€). Then, (F)
satisfies the equation: n(F) = v(F') and, for any H, ®(F + H) satisfies the equation: n(F + H) =
(F'+ H)yjw=u(®(F + H)) = (F+ H)yjw_5(€) = v(F + H).
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Let ||G|| denote the sup norm of g(y, ). Then, if H €D, there exists p; > 0such that if || H|| < p,
then, for some 0 < a,b < oo, all y and all s € N(m(w,e), ),

(1) [n(w)] < alH],

JYoe b, w)ds| < allH],
|[f(w) + h(w)| = b[f(w)|,and f(s,w) + h(s,w) > b|f(s,w)],
and, by (1) and (2) in the proof of Theorem 1, for some d < oo and all w’ such that 0 < f(w') < oo,
(2) supyep ‘(F + H)yw=uw(y) — FYlew’(?J)‘ < %%

Using arguments similar to those used in Matzkin and Newey (1993), we will show that there exist
p < p;such that if |H|| < p then

(3) (F + H)yhy o By (@) € Nim(w,e),€).

To show (3), we let r* = F;ﬁW:w(F L (@), r= (F—i—H){,llW:w(F L _(8)),and s = Fy -y (r), 80

Y|W=w Y|W=w
that r = Fyﬁy »(5). Then,
r=r" = (F+ H)yjwew(Fyip—5@) = Fr—u(Fyi— (@)

= Fyjw—u(8) = Fyjx—o(Fy =€)

= ( L ) (s — Fy‘ﬁ,:a(é)) + Remy

Ty iw=w(F. Y= ~(6)
2

where, for some j; < oo, |[Remy| < ji|s ‘ Fyw—a )‘ and where the last equality follows from
Taylor’s Theorem. Since (s — FY|VT/:G(5>) (Fyyw= w(r) (F+ H)y|w=w(r), it follows from (2) that
e 1 d|H|| Jld2HHH2
Ir =l < | e, m | T

Hence, if |H|| is sufficiently small, |r — r*| < &, which implies that (F + H);%W:w(FYW:E(é)) €
N(m(w,e),§).

Consider then the H's such that | H|| < p. We will show, again using arguments similar to those
used in Matzkin and Newey (1993) that for some ¢; < oo,

(4) [®(F + H) — ®(F)| < i [[H| -
For this we note that

(5) ®(F+H)—2(F)

= (F 4+ H)yjww ((F + H)y\ﬁ/:a(g)) ~ Fyiy—u (waT/:a(g))

={(F+ H)ylyy (F+ H)yi_s(0) = (F+ H)ylyy, (Fri_s(@) }
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P+ Byl (Frip—a(®) = Frivew (Fri—a(@) }

To obtain an expression for the difference in the first brackets of (5), we note that by Taylor’s
Theorem,

(F+ H)yhyey (F+ H)yip_a(®) = (F + H)yhyy, (Fyi_s(@)

O(F+H)y ~ - -
= ——= (Fy5_o(@) [(F + H)yi_s(8) — Fypii_z(@)] + Rem
where, for some j, < 0o, |[Rems| < ‘(F + H)Y|VT/:J(€> - FYIVT/ZJ(ar' Hence, since

1
Ty W (P g (Fy =@ ‘

OF+H)y _
‘ Ta (FYIVT/:J(@)‘:

_f(w)th(w) _
@) (P, (Fy o ~(@)w0)

is bounded by (1) and (3), and, by (2),

~ ~ d
(F + H)y (@) = Fy_s@)] < 2

it follows that for some a, < o0,

(6) |(F + H)y e (F+ H)yp_(8) = (F + H)yly—y (Fyi_s(@)] < a2 | H|.

To obtain an expression for the difference in the second brackets of (5), we note that by (1) and the
Mean Value Theorem,

(F + H)yjw=uw ((F + H)yiw—w (t)) = (F+ H)yw=uw (F;ﬁ/v:w (t))

= %(ﬁ) {(F+H)§_f\1w:w(t> N F;\]W:w(t)}

where ry is between (F' + H ){,‘IW:w(t) and F;‘%/V:w(t) and where t = FYM/:E(g)’ Hence, since (F' +

H)yiw—w (F+ H)yly—y (8)) =t = Fryw=u (Fyjy_, (t)) , it follows by (3) that

) ) Friwu (Fy o ® ) ~(F+H) v (Fiy_, 0)
1 1 —
(F + H)Y|W:w (t) - FY|W:w <t) - (f+h)y|w=w(r2) ’

It then follows by (2) that for some ag < oo,

(7) |(F + H)y ot = Fyip_s(8) = Fylyy(t = Fypiy_z(@)| < as | H|.
Hence, (4) follows by (5)-(7).

Next, we will obtain a first order Taylor expansion for ®(F + H), using the fact that n(F+ H) —
n(F)=v(F+ H)—v(F). Let [* denote [*__ . By the definition of 7,

N(F+ H) =n(F) = (F+ H)yw=uw(®(F + H)) = Fyjw=u(®(F))
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[¢(F+H) ®(F+H) h

f(s,w) ds—i—f (s,w) ds . fq)(F) f(s,w) ds
f(w)+h(w) fw)

By the Mean Value Theorem, there exist ryand rj, between ®(F) and ®(F + H) such that
JEEHD p(s w) ds — [P f(s,w) ds = f(re,w) (®(F+ H) — ®(F)) and
JEE) p(s w) ds — [*F) h(s,w) ds = h(ry, w) (B(F + H) — O(F)).

Let A® = &(F + H) — ®(F). Then,

AB+f (w)h(ryw)Ad+f(w) [T h(s,w)ds—h(w) [T f(sw)ds
F(w)(f (w)+h(w))

T](F + H) _ U(F) _ f(w) f(ryw)
where, by (1), f(w) 4+ h(w) > 0. By the definition of v,
V(F+ H) —v(F) = (F+ H)yx_5(€) — Fy|x_g(€)

fe f(s,w) fc\l/s—i—feNh(s,ﬂ//) ds fe f(s,NJ) ds
fw)+h(w) f(w)

_ F(w) [ h(s,w) ds—h(w) [ f(s,w) ds
F@w)(f(w)+h(w))

Let
AW = f(®) [€ h(s,@)ds — h(D) [€ f(s,@)ds and

Aw = f(w) [*F) h(s,w)ds — h(w) [*F) f(s,w)ds.

Then,
B [ th(rp ) oo

(8) n(F + H) —n(F) = {5t | A® + st and
—_— = %

9) v(F+ H)—v(F) MCIGCEIC)E

Since n(F+ H) —n(F) =v(F+ H) — v(F), it follows from (8) and (9) that

@) (£@)+h(@)) (F(rgw)+h(rw)) — F@)(frrw)+hlrsw)”

By the Mean Value Theorem, there exist ', between ®(F') and 7y, such that

of(r',,w)
flryw) — f(O(F), w) = +y (ry — ®(F)) . Hence,
Ad = (f (W) +h(w)) Aw _ Aw

~ ~ ~ r!,w) (r',w) .
@) (F@)+h(@)) (f(@(F)wH%yL(rf<1>(F>)+h<rf,w>> Fw) <f(‘1>(F)’w)+w—a£_(7'f‘I)(F))Jrh(rf’w))

Let
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_ f(w) ~ flw)
DO(F, H) = smmiama A0 + tapremm 2w, and

R®(F,H) = (f(w)+h(w)) __ fw Aw
’ e~ (rpw) w)2f(®(F),w
F)(f(w)+h(w)) <f(‘b(F),w)+w+y(Tf‘I’(F))Jrh("f,w)) JEP I (@ E)w)

1
(r',sw)
f(w) <f(q>(F>,w>+%(rf<I><F>)+h<rf,w>

1
) ~ Fwremw | Av-

Then,
(10) ®(F+ H) — ®(F) = D®(F,H) + R®(F, H).
By the definition of R®(F, H),

F @) £ (@(F) w)h(w) — f () ()2 ™ (v~ B(F))~ () £ @) )

Fw)2(f(w)+h(w)) F(@(F),w)(f(rpw)+h(rsw)) Aw

RO(F, H) = [

§ () F @) (@ (F) )+ 1 () F@)0(@) LG (1 — @ (F) - (w) @@ h(rn 0)

F(w)2(f(w)+h(w)) F(@(F),w)(f(ry,w)+h(rs,w)) Aw

af(r',,w)
—5E— (rs=®(F))+h(rs,w)

F ) F(@(F) ) (£ (rgw) +hiryw))

+ Aw.

Since, by the definition of ¢ and by (8),
rp = ®(F) < [®(F + H) — ®(F)| < ey [|H|,
it follows by (1) that, for some a4 < oo,
(11) [RO(F, H)| < a4 | H|.
Moreover, by the definition of D®(F, H), there exists a5 < oo such that
(12) [D®(F, H| < ag || H]| .
Let H = F — F. Then,
(13) fi(w, e) — n(w, e) = ®(F) — B(F)

— DO(F,F — F) + RO(F,F — F),
(14) |D@(F, F — F)| < a5 |[F — F|| and |R®(F.F — F)| < as]|F — F[".

By Assumptions C.1-C.4 and Lemma B.3 in Newey (1994), Hﬁ’ - F H — 0 in probability. Hence, by

(13) and (14), it follows that n(w,e) — n(w,e) in probability. Hence, the estimator of n(w,e) is
consistent
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Next, to derive the asymptotic distribution of n(w,e), we note that by(10)-(12), ® is Hadamard
differentiable at F. It then follows by Theorem 3.9.4 in van der Vaart and Wellner (1996) that

N (cb(z?y) - @(ﬁy)> Do (ﬁy, NG (Fy — ﬁy)>
converges in outer probability to 0. Since

Ws<e)=F, & ~(e)| ~

D(I)(ﬁY: (EY - ﬁY)) = leszl(m(w,e)) J { (@) W (f(S, w) — f(s, @)) ds

1(s<m(w,e))—F —w(m(w,e)) -~ -~
T | [ ) ] (f(s’ w) = f(s, “’)) ds,

it follows by the definition of n(w, e) and the Lemma in Appendix B that, if w # w,

D&(Fy,\/No2L(Fy — Fy)) — N(0,V,,)
2
where V,, = {[ K(2)?} {%] L and

fyiw=w(m

168 His®]” ~
L=1[d, =d] [ T R )] f(s,w) ds

s<m(w,e F —w(m(w,e 2
+1[dy = d] [ {1( <f(1£)’ ) _ Dyw f(fﬂ)( ))} f(s,w) ds

= H%Fy\w:a(g)(l - Fy@:a(g)) + H;l(QT:)leY\W:w(m<w7 e))(1 = Fyjw=w(m(w,e)))

_ [1di1=d] 1[do=d] _ ~ _ ~
B [ @ TR }FY\W=E(€)(1 — Byip=5(©)

where the last equality follows by the definition of n(w, e). Hence,

VN 01%/2 (m(w,e) —m(w,e)) = VN 0?2 (CD(F) — CI)(F)) — N(0,V},)

F ~:;(€) 1-F, ~ ~(e) _ _
where V, = { K(2)} wayw_§<n<$,evvn2 ) [t +

Proof of Theorem 3: Consider first the case where Assumptions (A.i)-(A.vi) are satisfied. Without
loss of generality, we will show the identification of the distribution of e;, conditional on Xy = wy.
Given n € R, let y = r1(n). Note that when X = (wp,W;, Wy, ..., k) = (wo,Wr), ¥ = m(X,e) =
r1(e1). Hence,

Pr (Y < y|X = (wo, @) = Pr (ri(e1) < mi(n)|X = (w, ")) = Pr (1 < 0| X = wp)

where the last equality follows by Assumption (A.vi). Hence, the marginal distribution of ¢y, condi-
tional on X, is identified from the conditional distribution of Y, when X = (wg, Wy,). Using similar
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arguments, we can conclude that the marginal distribution of each ¢, conditional on W, is identi-
fied from the conditional distribution of Y when X = (wp, wy, ws, ..., wk) is such that wy = @, and
w; = w; for j # k. By Assumption (A.v), the distribution of ¢ conditional on X is the multiplication
of the marginal distributions, conditional on Xj. Hence, Fy|x, is identified..

Next, we show that the functions ny are identified. Without loss of generality, we show this for
k = 1. Note that when X = (wg,wy, Wy, ..., Wg) = (wo, w"), Y = m(X,e) = 71 (ny(wo,,ws,€1)).
Hence, using the conditional independence between ¢ and X, and the strict monotonicity of n; in
g1 it follows that

Pl"(f—:l S ’I]|X0 = w())

= Pr(e1 < n|X = (wo,w"))

= Pr(ni(wo,, wi,e1) < ma(wo,, wi, )| X = (wo, w*))

= Pr (r1 (m(wo,, wr,€1)) < 1 (ma (wo,, wi,m)) [X = (wo, wh))

=Pr (Y < r1 (n1(wo,, w1,m)) | X = (wo, wk))
Since, as we have shown above,

Pr(e; <n|Wy =wp) = Pr (Y <ri(n|X= (wo,wk))
it follows that

FY|X:(w0,mk) (r1(n) = Fy | x—(wo,wk) (71 (n1(wo, , w1,m)))

Partition wg as wg = (wo,, wo_, ). Note that

FY|X:(w0,wk) (1 (n1(wo,, w1, m)))

— f’rl (nl(wol’wlzn)) f(sawozwljélj%'“@K) dS
f(wo,w1,w2,...,wk)

_ frl(nl(wol,wl,n)) f(s,wo,wlizg,...,ﬂ//K) ff(wolvwo,lywhﬂ;zw--va}()

- — dw ds
f(wo,w1,w2,...;wk) fwoq wi,we,...,wk) 0-1

_ fn(nl(wol,wl,n)) f f(svwol7w0,17w17527---7{0/K)

— dwg_,ds
f(wol ,’UJ1,'LU2,...,'LUK) 01

_ f'rl (nl(wol,wl,'r))) f(S,wol,wli;%m@K) ds
fwoq ,wi,wa,...,wk)

= FY|X:(w01,wk) (r1 (na(woy, w1,m)))
Hence, since
Fy | X —(wo,a) (11(1) = Fy | x=(wo, w#) (11 (n1(wo,, w1,1)))

it follows that

40



n1(wo,, wy,n) = Fyé{ (wo, swk) (FY\X:(wO,Ek) (r1 (77))) :

This completes the first part of the theorem.

Suppose now that Assumptions (A.i)-(A.iv), (A.v’) and (A.vi’") are satisfied. Then, the results
in the first part of the theorem, together with the added conditions that € is independent of X,
imply that, say, for k = 1 and y = r1(n),

Pr (Y <y|lX = (wg,wk)) =Pr(e; <n).
Using the fact that

Pr (Y <ylX = (wg,wk))

.....

_ f [fyfswo W1 wz ,,,,, W) ds} f(wo, W1 ,wa,..., Wk)

f(wo, w1 w2 ..... wK) f(ml,lfz;z ..... ’EJJK)

_ fyf f(s wo w1 wa,..., wK) d’lUO ds

f(@1,w2,...,wk)

_ vy f(swiwa,.., wK
_f f(@1,wa,.., ds

_ fy 8,01 w2 .....
f(®@1,wa,.., wK)

it follows that

F€1 (77) =Pr (51 < 77) = FY\w (@1,w2, .-, ~K)(T1(,’7>>‘

Since, Pr(e; < 1) = Pr(e; < n|Xo = wp) and, as shown in the first part of the proof,

Pr (81 < U’XO = 'LU[)) = F’Y|X:(w01 WL, W2, WK ) (7’1 (nl (w017w17 77))) ’

nl(wﬂnwla 77) - (Fyﬁx (wo, W1,W2,..s WK ) (Fal (U)))

77777

(Fyﬁx (wo, swk) (FY\wzﬁk (7’1(77))))

The argument for k£ # 1 is analogous. Hence, for each k, F., and n; are identified. Since the ¢’s
are independent across k, this implies that the joint distribution of (g1, ...,x) is identified. This
completes the proof.

Proof of Theorem 5: Let T and € be as defined in Section 4. Let the functional A be defined as in
the proof of Theorem 1 for W = X, y = ¢ and w = . Let the functional ® be defined as in the proof
of Theorem 2. Hence, A(G) = Gy x_z(€) and ®(G) = ;,‘1)(:1: (wazg(é)) , where G : R"F — R,
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and for all y, z, z, Gy|x=.(y) = [Y5 9(s,2)ds/g(z), g(s,2z) = 0¥ G(s,2)/0s0z - - - Dz, and g(z) =
25, g(s,z)ds. For all such G, define the functional = by

[1]

— 1 9g(x) N 1 r®(G) 9g(s52
(G) T 9(®(G),r) %m GY\X:m(e) T 9(®(G).x) f gam ds.

—

Then, Z(F') = Mmaﬁl and E(F) = M"gi—’el . Define the functionals p , 8, and v by

uw(G) = g(¢(é)7w): B(G) = a%(;c)v and v(G) = f@(G) 8g((3;m) ds.
Then,
(1)

Let ||G|| denote the sup norm of ag(s %) Let H be such that H vanishes outside a compact set,
H is differentiable up to the 2L + 1. Let p > 0be such that if ||H|| < p, then for some a,b,d < oo

[1]

(G) = (@) B(G) MG) = (@) +(G).

(2) [p(@)] < alH], |[2

wh(s,@)ds| < allH]|,
F(@)+ (@) > b|f (@), f(s,2) + h(s,) > b|f(s,2)|,and

(F+ H)yjx_,(Fyx—5()) € N(m(z,e),€).

The existence of such a p is guaranteed by (1) and (3) in Theorem 2. Consider the H’s that satisfy
IH| < p.

Analogously to the main arguments in the proofs of Theorems 1 and 2, we will derive the
asymptotic behavior of Z(F) by first obtaining a first order Taylor expansion of Z(F 4 H), and then
letting H = F — F. With this aim, we will first obtain first order Taylor expansions for p (F + H),
B(F+H), A(F+ H), and v(F + H).

First note that, by the proof of Theorem 2,

(3) ®(F+ H) — ®(F) = D®(F,H) + R®(F,H),
where

{1(3{5)7F

_~()
m(m B)) I f(g)‘x_x w 1(87;)(S,z) h(s,z) ds dz

(4) D®(F, H) =

fy|x=z

=) ff [1(s<mw6) f;f)lx z(m(xe))] 1(87x)(s,z) h(S,Z) ds dZ,

Jy|x=2(m

and for some ¢; < oo,
(5) |D(F, H)| < e1 || H|| and |[RO(F, H)| < e ||H]|".
By (1) and (2) in the proof of Theorem 1,

(6) A(F + H) — A(F) = DA(F, H) + RA(F, H), where
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_ [ h(s@)ds—h(=) FY‘X:;(E)

(7) DA(F, 1) . ,

and for some ¢y < o0,
(8) [DA(F, H)| < e ||[H| and |RA(F, H)| < e ||H|*.

To obtain a first order Taylor expansion for p(F + H), note that

_ 1 1
p(F + H) = i(F) = samrmameErme) — FeFEmL)

_ _f(®(F)x)—f(B(F+H)x)—h(®(F+H),x)
T [f(@(F+H)2)+h(®(F+H),x)| f(®(F+H),z)

where p(F + H) is well defined by (2). Let A® = &(F + H) — ®(F). By Taylor’s Theorem, there
exist dy,dy < oo, such that

F(@(F + H),z) — f(2(F), ) = LEUDAS + Remy, and
h®(F+ H),z) — h(®(F),x) = %%?MAQD + Remy, where
Remy < di |A®|* and Remy < dy |A®|*. Then,
F((F),z) = f(O(F + H),z) — h(P(F + H), z)
= —UEELD NG — Remy — h(D(F), ) — PEEDIND — Rem,

and

1
[f(@(F+H),x)+h(2(F+H),z)f(2(F+H),z)

1 1 . 1
= TEE? T [[f(@(F),x)JF%%MAMRem1+h(q>(F),w)+%lﬁlM>+Remz]f@(F),w) f(‘1>(F),w)2]
" — 2L Ap—Re my —h(®(F) ) ZLEEDL Ap—Rems,
F@EE T [F(@(F),2)+ 2L NG Re my+h(D(F),2)+ DL AG+Rems | f(@(F) )3

Let
,MDMF,H) — h(®(F),x)
(9) Du(F,H) = S ARk
and
— 2LEE)2) p(F,H)—Re my — 2LV AG—Rems
Ru(F, H) = . TR

[fﬁ%?mAéfRemlfh(é(F),m)f%%?mAcbeemg]Q
F(@(F),2)+ DL Ao+ Re ma+h(P(F),z)+ ZLEEDL Ad+Rems | f(@(F),z)3

Ml
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Then,

(10) u(F + H) — p(F) = Du(F, H) + Ru(F, H),
and for some c3 < 00,

(11) [Dp| < 3| H| and |Rp| < s || H]P*.

Next, letting

(12) DB(F, H) = 22,
it follows that
(13) 6(F + H) — B(F) = DA(F, H)
and for some ¢; < oo,
(14) [DA(F, H)| = a4 || H]| .
To obtain a first order Taylor expansion for y(F + H), we note that
V(F + H) —~(F) = [PEHH) 2llon) gg o p®UH) D) g p®(F) Bl{s2)
By Taylor’s Theorem, there exists d3 and d, such that
fg((lf)+H) % ds = —af((ba(f)’m) D® + Remg,and
f;%JrH) %i’—xl ds = 2&F)z) @85 2 D® + Remy,
where for i = 3,4, |Rem;| < d;|D®|*. Hence, since
O(F+ H)—®(F)=DP(F,H)+ R®(F,H),
it follows that
(15) y(F + H) —v(F) = Dy(F,H) + Ry(F, H), where
(16) Dy(F) = 2L Dg(F) 4 [20) 2b2) g and
Ry(F) = M%mﬁﬁlR@(F) + %%—MD@(F) + Rems + Remy.
It then follows by (3) and (5) that there exists ¢5 < oo such that

(17) [DY(F)| < s ||H|| and [Ry(F)| < ¢s | H].
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We are now in a position to obtain a first order Taylor expansion for =(F + H). Denote
p(E), B(F),v(F),A(F),®(F), and Z(F) by p, 3,7, A, ®, and =, respectively, and denote Dw(F, H)
and Rw(F, H) by Dw and Rw, respectively, for w = u, 3,7, A, ®,=. It is easy to show that

(18) Z(F + H) — Z(F) = D=+ R=,
where

E=DuBA+pDBA+pBDAN—Dpy—p Dy, and
E=puBRA+ puDB(DA+ RA)+ Dup (DA + RA)
+Dpu DBANF +H)+ RuB(F+H)ANF+ H) — pRy— Ruy
—(Dp+ Rp)(Dy + Ry).
By (8), (11), (14), and (17), there exists ¢ < oo such that
(19) [DE] < [Dpl |8 Al + Al [DB| + [uBl |DA| + [Dul [v] + |u] [ D]
<[ HJ,
and
(20) |RZ| < cq [|H|”.
We will now use this first order Taylor expansion of = to show the consistency of am(a:/,z) /0x

and to derive its asymptotic distribution. Let H = F — F. Then, 2(F+ H)—Z(F) = Z(F)—E&(F) =
om(x,e)/0x — Om(x,e)/0x. By (19) and (20),

[1]

om(z,e) __ Om(z,e)
Ox

~ ~ 2
<al[F - pl ol

and by Assumptions C.1-C.3 and C.4’, Hﬁ — FH — 0 in probability. Hence, am(m/,z)/am —
Om(x,e)/0z in probability. By (18)-(20), = is Hadamard differentiable at F. It then follows by
Theorem 3.9.4 in van der Vaart and Wellner (1996) and the Lemma in Appendix B that

VNoi*" (E(F) - E(F)) = DE (F, VNoy/?™ (F - F))

converges in outer probability to 0. Let

= Oh(z) 1 ®(F) Oh(s,x) ds
D.= f<¢>< T Lyix=8) "5 ~ j@ms / oz

and

Dy== D= — D;=.
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Since

= _ Prix—u(mlze) (0f(x) _ 0f(x) m(z.e) (Of(s,2) _ 0f(s.m)
Dl“_‘_ f(m(z,e),z) < ox oz ) f(m(x e),x) f < ox ) ds ’

it follows, by the Lemma in Appendix B, that
VN &P DIE - N(0, Vi)

where

V _ FY\X:m(m(wve)) (1_FY|X:m(m(xve)))
0z = Py | x—a(m(z,0))2 f(z)

P (7 e a) (1 2205 0]
Using the same Lemma and the definition of D,Z, it is easy to show that
Dy (F,V/No§'™ (F — F)) — 0 in probability.
Hence,
DE (F,V/Noy/** (F - F))
= DE, (F,VNoy/?™ (F = F)) + D=, (F,VNoy/**" (F - F))
— N(0, Vay).
It then follows that

in distribution, where

_ FY\X:z(m(wve)) (1_FY|X:z(m(xve))) 0K (s,z 0K (s,z !
Voo = Ty e (@)1 (0) [f (f #ztds) ( #522Lds) d

The result of the Theorem then follows by noticing that

Fyjx=e(m(z, ¢)) = Fy|x_;(€) = Fe(e).

Proof of Theorem 6: As in the proof of Theorem 5, we let A, ®, and p denote the functionals
defined by A(G) = Gy x_3(€), ®(G) = Gylx_, (Gyx=(¢)) , and W(G) =1/ F(®(G),z), where G :
R — R, and for all y, z, z, Gy|x—.(y) = [Y 9(s,2)ds/g(x), g(s,z) = 0T G(s,2)/00z - - Dzt
and g(z) = [%0 g(s,z)ds. For all such G, we define the functionals

B(G) = (42) (2), 3(6) = [ (22) (2) ds,
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UG) = 75, m(G) = f(x), and ny(G) = f(&,7).
Define also the functionals
U1(G) = Q) m(G) mo(G) v(G) () + (G m(G) v(@)F(G)

—u(G)m(G)v(G) AG) B(G).

Q

and
Uy (G) = w(G) 1 (G) no(G) v(G)

Then, when m satisfies specification (5.1I), % — Uy (F) and % = U, (F), while when

m satisfies specification (5.I), uma:—’el — Uy(F) and uma:—’el = Wy(F). To derive the asymptotic
properties of Uy (F) and Wy(F), we first obtain first order Taylor expansions for Wy (F + H) and
Uy(F + H).

Let ||G|| denote the sup norm of dg(s,x)/dz. Let H be such that H vanishes outside a compact
set, H is differentiable up to the order 2L + 1, and ||H]|| is sufficiently small so that, for some

a,b,d < oo
(1) [h(@)| < a||H|, | % h(s,x)ds| < a | H]|,
[f (@) + h(z)] 2 b[f (@), f(s,2) + h(s,z) = b[f(s,z)[,and
(F + H)yjx—o(Fyx—3(€)) € N(m(w,e),£).
Equations (3)-(11) in the proof of Theorem 5 provide first order Taylor expansions for the

functionals ®, u, and A. Using similar arguments as in the proof of that theorem, it is easy to
establish that

(2) B(F + H) — B(F) = DB(F, H),

where

(3 DB(F.H) = (%) (

ox

olls]

).

and for some k; < oo,
(4) | DB(F, H)| = k1 | H] ;
(5) F(F + H) — 3(F) = D3(F, H),

where
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and for some ky < 00,

(7) [DY(F, H)| = ka2 | H| ;

®)v(F+H)—v(F)=Dv(F,H)+ Rv(F, H),
where

(9) Dv(F, H) = <), Ru(F, H) = ﬁ%
and for some k3 < oo,

(10) [Du(F, H)| = k3 [|H]| , and |Ro(F, H)| = ks || H]|;
and

(1) y(F + H) —n;(F) = Dny(F, H) 1=1,2
where

(12) Dy = h(zx), Dny = h(e, T),
and for some k4 < 00,

(13) |Dny(F H)| < k4 || H]| =12

Denote M(F) ﬁ( ) ( )7A(F)7 ( ) (F) 771(F)7 and 772(F) by 22 B ?7/\ q)71/7n17 and Mo, T€-
spectively, and denote Dw(F, H) by Dw, for w = u, 3,75, A, ®,v,1,,n5. Define

DU, (F, H) =
Dy mynyv (%) + pDnymyv (%) +pmDnyv (%) + pny ny D (%)
+Dpmvy+p Dy vy +pnDvy + pn v Dy
—Dunyv AB—puDnyv AB— pn,Dv AB
—HMmVY DAB—/”hVADB-
(14) R, (F, H) = Uy (F + H) — U, (F) — DV, (F, H),
DVy(F,H) = Dp mynav +pDnyngv +pnDnyv + pnyny Dy,

and
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(15) RUo(F, H) = Uo(F + H) — Uy(F) — DUy(F, H).

Using equations (2)-(13) above and equations (3)-(11) in the proof of Theorem 5, it is easy to show
that there exists ks, kg < oo such that

(16) |DO(F, H)| < ks |H||, |RY+(F, H)| < ks || H||*, and
(17) |DWo(F, H)| < ke | H||, and |RVo(F, H)| < ke | H|*.

We will first use the first order Taylor expansion, (14) and (16), to derive the asymptotic
properties of am(m,/\e) /de when m satisfies specification (II). Let H = F' — F. Then, U (F + H) —
Uy (F) = Gm(a:/,\e)/as — Om(x,e)/0e. By (14), (16) and Assumptions (C.1)-(C.3) and (C.4"), it then
follows, by the arguments analogous to the ones used in the proofs of the previous theorems, that
8m(:gz) /0 — Om(z, e)/0e in probability. Also by (14) and (16), ¥, is Hadamard differentiable at
F. Let

Dl\Ill(F,F+H>:ILLT]lyD’F}V/—ILLT]lVADB and DQ\I/1:D\I/1—D1\I/1.
Since, when H = F — F,

J(32) @) rO(%2) ()
fy|x=c(m(z,e)) f(z) fy|x=a(m(z,e)) f(z
J(HR) B R @524 ()

Fyix=s(m(z,e)) f(z) fyix=a(m(z,e)) f(z)

D\U,(F,F —F) =

it follows, by applying the Lemma in Appendix B, that
Dy (F,VNoy/*" (F — F)) — N(0, Vira.)

in distribution, where

o8]

R 2@ 0-F, @)
V}I,Ba - fY|X:z(m(mfe))2f(~) (

) |1 (1 et (1 #5eas) e (2) |
while

D,V (F, VN> (F — F)) = 0 in probability
Since, by Theorem 3.9.4 in van der Vaar and Wellner (1996),

VN (W (F) = W(F)) = VNog/ >t (D10 (F, F — F))

converges in outer probability to 0, the above implies that

Oe Oe
in distribution, where

N (Bm(w,e) - am(a:,e)) — Nk (‘Pl(ﬁ) _ %(F)) — N(0,Vir,:)
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Vira. = St et (o) [1 (1 25e2as) (1 2ean) 0] (3)

The statement in the Theorem follows by noticing that Fyx_z(€) = F(e).

We next use the first order Taylor expansion, (15) and (17), to derive the asymptotic properties
of dm(x,e)/de when m satisfies specification (5.1). Let H = F — F. Then, Uy(F + H) — Uy(F) =

Gm(x,/\e)/aé — Om(z,e)/0e. By (15), (17) and Assumptions (C.1)-(C.3) and (C.4°), it follows, as

previously, that Om(z, e)/0e — Om(x, e)/0e in probability. Also by (15) and (17), ¥, is Hadamard
differentiable at F. Let

_ hme)s) fGR) f)
Di¥2 = —fowan? s T 7

hER) f(@)
(m(z,e),x) f(z)

By following arguments similar to the ones used earlier, and using the Lemma in Appendix B, we
can show that the asymptotic distribution of 0m(x,e)/de — Om(x,e)/0c will be driven by D;V,,
because in the terms in D; Wy, all the L 4+ 1 coordinates in the argument of the function h are fixed,
while in the other terms of DW,, only L coordinates are fixed. Since

(Jm@e)a)—f(m(ze).2) 1E3) f@) , (TED-FED)) f)

DyUs(F F = F) = — o 0ap @) Fm(@e) ) 1@

the results of the Lemma in Appendix B imply that
Dy (F,V/No&HY2 (F = F)) — N(0, Vi)

where, since e # m(z, e),

2 f(&7) Iy x (€2 f(m(z.e),2)
Vige = (J K(s,2)°dsd2) ) 5o o7 7ar T Frix s mwor Far

= (f K<S Z)2d5d2) fY‘X:;(eV) — 4 fy|X:;(52
9 fY|X:z(m(afJ,e))2 f(z;) fY|X:z(m(fr,e))3f(:r) .

By the Delta method, it then follows that

VNo{ 2 (3"";;:7@) —~ 3m§§7e)) = VNo ™ (0o F) — Wa(F))

- N(07 ‘/1,86)

Finally, we note that the asymptotic properties of am(m,/\e) /0e when m satisfy specification
(5.I1I) follow from Theorem 5.
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Appendix B

The following Lemma presents well known results about kernel estimators (see, for example,
Newey (1994)). They are presented here for completeness.

LEMMA: Suppose that the following assumptions are satisfied:

(i) {yi, x;} is iid, y; has values in RL and z; has values in R%.

(ii) The joint density f(y,z) has a compact support © C R¥T? f is continuously differentiable
up to the order g =t + s for some even s > 0.

(iii) The kernel function K (-,-) is continuously differentiable, K vanishes outside a compact set,
[ K(y,x)dydz = 1, and K is a kernel of order s.

(iv) The function r(y, ) is continuous and bounded a.e.
Then,

(1) ift =0, No% — 0o and o%\/No% — 0, then

VNoS [ r(y.2) (Fly.) = f(,2)) dy — N(O.1A)

where Vi = { [ [r(y,2) f (v, x)dy} { ] (] K(y,2)dy)’ dz },
and for any two distinct points (V) and z®),

VNG iy a®) (Fly,2®) = f(y,aV))dy and

VNG [r(y, z®) (Fly, 2D) — f(y,2V)) dy are asymptotically independent.

(D) if t = 1, No¥™ — 0o and o%\/No%t? — 0 then
VNoR [r(y.a (af(”) 8“”)) dy — N(0,V5)
where V = { [ [r(y,z)]" f(y, x)dy} K>

and K, = {f (ff%agildy) (ffaKa%,w)dy)’dm}.

Moreover, for any two distinct points (") and z(®),

/N Q+2f7n y, z) (Bf(yw(”) 3f(zg;»‘(”)> dy and
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No@t? [r(y,=?) (af (%’;(2)) i (135(2))> dy are asymptotically independent.

PROOF: We first show (I). By the definition of f,

~

fr(yv iL') (f(yv CL') - f(ya ZL’)) dy
= [r(y,) (F 2N, A K (8, 222)) — f(y,o)]) dy

= ¥ X Sy 2) e K (2, 222)dy — [r(y, @) f (y, x)dy|

Let
w; = =g [1(y, z) K (L=, Z=2)dy,.

o o

Then,

~

fr(yv iL') (f(yv CL') - f(yam)) dy
= ¥ i [wi — [r(y,x) fy,z)dy]
= % 2N, [wi — E(w)] + [E(w;) — [r(y, =) f(y,z) dy]

We will show that under the above assumptions, the first term is asymptotically normal and the
second converges to 0. For this, we note that

E(w;) = E (73 [ r(y, o) K (44, 2=2)dy)

= [ | (2 [y 2) K (82, 222)dy) f(yi, 2)dyide;
= [ [ (Jr(y, 2)K (§,%)dy) f(y + 05, « + 0F)djdz

= [r(y,2) (] [ K(5,8)f(y + 0f, x + 0F)djdF) dy

Using a Taylor’s expansion of f(y + oy,x 4+ 0Z) around f(y,z) and using the assumption that the
kernel function K integrates to 1 and is of order s, it follows that

(1) E(w;) = [r(y,z)f(y, z)dy + O(c®).

Next,
i—Y Ti—T 2
B(u?) = B (s [[ 7y 0) K (452, 252)ay)])

= B (o [ rlv— o7 )G 22)a])
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= [ [ [y —of,2)K(§,2)dg)* f(yi, © + 0F)dy;dE

Then, by the continuity and boundedness of f and r, it follows by the Bounded Convergence
Theorem that

(2) 02B(w?) — ([ r(y, 2)*f(y, 2)dy] { ] (] K (y, 2)dy))’ dz} .

From (1), (2), and 0 — 0it follows that

oVar(w) — [[r(y, 22 f (v, x)dy] { ] () K(y,2)dy))* dz}
Let 6 > 0. Since

246 § 2246 B, 2+6

N2+6

E ‘%(wi — E(w;)

246
E’U)i’2+6 — E +

o [y, o) K (ML, 22 dy|
1 -~ ~ ziay =216

= 11 (b [ 7l = 07 ) K G 25205 ) £y )y,

= | J (st | r (v = 0,25 — oB) K (5, )" ) f (s, @ + 07)dyjd

=0 (72t

and

246
(Vargwi))T ~0 ( 1 ) ’

N - (NO_Q)1+%
it follows that

| 246 | 246

SNE|(E-EGHTT SN BB
2186 — ] 5
[(var s, %)™ (var(5))""2

By Liapounov’s Theorem it then follows that

1
= O (o) — 0.

o)

NU%(% i=1 Wi — E(wl)) — N(0, Vl)

where

Vi=[frly, 2 f (y, 2)dy) { ( K(y, 2)dy))* da | .

Since by (1) and by assumption,

YNGR (B(wi) — [ r(g.2)f (g 2)dy) = O (o5y/NoF) — 0

the first part of (I) is proved.

53



Next, to show the asymptotic independence, we note that by (i) and the definition of f the
covariance equals

02(L+Q) {E[(Jr' KN (JrPK?)] - E(fr'K") E([r*K?)}

where

(frkKk) = [r(y,2®K (yfy, &L(k)) dy k=1,2

e}

Since

E[(fr'KY) (fr*K?)]

= Q[ (JFKY) (JFKY) flyo, 2D + oF)dyidi
where [P K = [r(y; — o5, 2K (7, %)dy
and [7PK? = [r(y; — of, s®)K (5, + M)d@

it follows by bounded convergence, (1), and o — 0that the covariance converges to 0.

We next show (II). By the definition of f,,
JIr(y.z) (Foly, ) — foly,x)) dy
= i) (F oV, [ o) ay

_ K (%Y Zi— T (y,x)
ff?“(y,m) g£+é)+1 ( e )dy - ff?“(y,ib) 8f8?r dy}

_ 1 N
= ¥ 2iz1

T

(yi*y Ti—T

Let w; = ﬁ:—é% I [r(y, a:)aK )dy. Then,
fr(y7 $) (.}?.fr(y7 Z, Z) - fm(Z/; Z, Z)) dy
= 15N, [wi— B(w)| + [B(wi) — [ r(y, ) 22y

We note that

a (yl'*y 11'*1)

<0L+Q+1 Jr(y,> —%dy)
ff(%rg% Sy, z)%E (23 = )dy> f (s, x5)dy;da;

I (SR r(y, o) 28 dy) f(y + 0,2 + o) djda
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= [r(yx) (/K@ )Mﬁgiwdydm) dy

of (ytoy,z+oz)
ox

around ﬂ{?iil and using the assumption that the kernel function K integrates to 1 and is of order
s, it follows that

where the last inequality follows by integration by parts. Using a Taylor’s expansion of

(3) B(w;) = [ [ r(y, z) L= dy + O(0”).

Next,

E(wiw;)

Yi—y ri*w)

=EB (m [f T(y,m)ﬂ%d.ﬂ] [f r(y, m)udy]>
=F ( 2Q+2nr)

= ff( Q+2Tz )f(ywx + 0%)dy;dz

where r; = [r(y; — o7, ) (ya:_)dN
and Ti == fT‘(y@ - Ug7 )LB;Z)dN

By the continuity and boundedness of f and r, it follows by the Bounded Convergence Theorem
that

(4) o9 B(wawy) — [ r(y,2)* f(y, 2)dy] K

wtere € = {1 (1 2542y) (1 25402t}

From (3), (4), and ¢ — 01it then follows that

a@P2Var(w;) — [[ 1y, x)*f(y, 2)dy] K

To apply Liapounov’s Central Limit Theorem, we note that, for 6 > 0,

E ‘%(wi _ B[ < 2w

N2+6
where
_ oK (Vizy zizey |2+D
Ewl*" = B |58 [r(y, )22y
_ 2+6 ~ OK (y,=—
=/ (a(Q+11)(2+5) fr( - Uyax)(—'—de ) f(yiaxi)dyidxi
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-1 246

fo<(,4@<1—+s>%+5

_ 1
=0 (O.Q(1+6)+2+6 )

_ T g~ 246 N N
Jr(yi — oy, m)ﬁai’*ldy\ ) f(i, © + 0%)dyiydz

and
Var(w;) a 1
ar(w; 2
( N ) =0 ((NaQ+2)1+§> ’
Hence,
DDA (G 1) D DD ) (G e 1 0] I )
{(V;rzl\lfv &)1]\/]2:| 2+6 Evar(lv?_\}L))lf% T O (W) - O
i=1 N

By Liapounov’s Theorem it then follows that

VNoK™ (3 S fws = B(w)]) — N(0,V2)

where Vo = [[7(y, )2 f(y, z)dy] K
and K = {J ( 2eay) ( 24222y da |

Since, by (3), /No¥™? (E(wl) - ffr(y,x)%iil)dy) = O(0%\/No%™) — 0. The first part of

result (II) is proved. To prove the second part of (II), we note that by (i) and the definition of %ﬁ,
the covariance equals

Sram {E[([r'OK") (fr?0K?)] — E ([ r'0K") E ([ r*0K?)}

where

iy o2k

(frkaKk):fr(y,x(k))aK( 68; Z )dy k=12

Since
E[(JrloK") (Jr?0K?)]
= o2+ [ ([FOKY) (JFOKY) f(yi, 2D + 0F)dy;dE

where [ 7R = [r(y; — 07, 1) 202 g

21 _2(2)

OK (ym+—=2—=) dj

oxr

and f?zEQ = [r(y; — oy, @)

it follows by bounded convergence, (3), and o — 0that the covariance converges to 0.
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